当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrically Controlled Excitons, Charge Transfer Induced Trions, and Narrowband Emitters in MoSe2–WSe2 Lateral Heterostructure
Nano Letters ( IF 9.6 ) Pub Date : 2024-11-11 , DOI: 10.1021/acs.nanolett.4c03464 Baisali Kundu, Priyanka Mondal, David Tebbe, Md. Nur Hasan, Suman Kumar Chakraborty, Marvin Metzelaars, Paul Kögerler, Debjani Karmakar, Gopal K. Pradhan, Christoph Stampfer, Bernd Beschoten, Lutz Waldecker, Prasana Kumar Sahoo
Nano Letters ( IF 9.6 ) Pub Date : 2024-11-11 , DOI: 10.1021/acs.nanolett.4c03464 Baisali Kundu, Priyanka Mondal, David Tebbe, Md. Nur Hasan, Suman Kumar Chakraborty, Marvin Metzelaars, Paul Kögerler, Debjani Karmakar, Gopal K. Pradhan, Christoph Stampfer, Bernd Beschoten, Lutz Waldecker, Prasana Kumar Sahoo
Controlling excitons and their transport in two-dimensional (2D) transition metal dichalcogenide heterostructures is central to advancing photonics and electronics on-chip integration. We investigate the controlled generation and manipulation of excitons and their complexes in monolayer MoSe2–WSe2 lateral heterostructures (LHSs). Incorporating graphene as a back gate and edge contact in a field-effect transistor geometry, we achieve the precise electrical tuning of exciton complexes and their transfer across interfaces. Photoluminescence and photocurrent maps at 4 K reveal the synergistic effect of the local electric field and interface phenomena in the modulation of excitons, trions, and free carriers. We observe spatial variations in the exciton and trion densities driven by exciton–trion conversion under electrical manipulation. Additionally, we demonstrate controlled narrow-band emissions within the LHS through carrier injection and electrical biasing. Density functional theory calculation reveals significant band modification at the lateral interfaces. This work advances exciton manipulation in LHS and shows promise for next-generation 2D quantum devices.
中文翻译:
MoSe2–WSe2 横向异质结构中的电控激子、电荷转移诱导激子和窄带发射极
控制激子及其在二维 (2D) 过渡金属二硫化物异质结构中的传输是推进光子学和电子片上集成的核心。我们研究了单层 MoSe 2-WSe2 横向异质结构 (LHS) 中激子及其复合物的受控产生和操作。通过将石墨烯作为场效应晶体管几何结构中的背栅和边缘触点,我们实现了激子复合物的精确电调谐及其跨界面的传输。4 K 的光致发光和光电流图揭示了局部电场和界面现象在激子、牵引子和自由载流子调制中的协同作用。我们观察到在电操纵下由激子-trion 转换驱动的激子和 trion 密度的空间变化。此外,我们还演示了 LHS 中通过载流子注入和电偏置实现的受控窄带发射。密度泛函理论计算揭示了横向界面处的显著能带修饰。这项工作推进了 LHS 中的激子操作,并显示出下一代 2D 量子设备的前景。
更新日期:2024-11-11
中文翻译:
MoSe2–WSe2 横向异质结构中的电控激子、电荷转移诱导激子和窄带发射极
控制激子及其在二维 (2D) 过渡金属二硫化物异质结构中的传输是推进光子学和电子片上集成的核心。我们研究了单层 MoSe 2-WSe2 横向异质结构 (LHS) 中激子及其复合物的受控产生和操作。通过将石墨烯作为场效应晶体管几何结构中的背栅和边缘触点,我们实现了激子复合物的精确电调谐及其跨界面的传输。4 K 的光致发光和光电流图揭示了局部电场和界面现象在激子、牵引子和自由载流子调制中的协同作用。我们观察到在电操纵下由激子-trion 转换驱动的激子和 trion 密度的空间变化。此外,我们还演示了 LHS 中通过载流子注入和电偏置实现的受控窄带发射。密度泛函理论计算揭示了横向界面处的显著能带修饰。这项工作推进了 LHS 中的激子操作,并显示出下一代 2D 量子设备的前景。