当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Prussian Blue Analogue Framework Hosts for Li–S Batteries
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-11-11 , DOI: 10.1021/acsenergylett.4c02857 Dasol Jin, Mihail R. Krumov, Ruth M. Mandel, Phillip J. Milner, Héctor D. Abruña
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-11-11 , DOI: 10.1021/acsenergylett.4c02857 Dasol Jin, Mihail R. Krumov, Ruth M. Mandel, Phillip J. Milner, Héctor D. Abruña
Lithium–sulfur (Li–S) batteries hold promise for next-generation energy storage due to their high theoretical energy density (∼2600 Wh kg–1). However, practical use is hindered by capacity loss from the polysulfide shuttle effect and poor energy efficiency due to slow kinetics. To overcome these challenges, we developed a novel sulfur host material featuring highly porous concave nanocubes derived from a Prussian blue analogue. By controlling the annealing conditions, we achieved a high surface area (up to 248 m2 g–1), which enhances polysulfide adsorption, thereby reducing sulfur dissolution and minimizing the loss of cathode capacity during cycling. Operando Raman spectroscopy revealed that this material also provides a synergistic catalytic effect, lowering polarization/overpotentials within Li–S cells. The optimized material enables an extended battery life with high sulfur loading, a low E/S ratio, and excellent capacity retention over long-term cycles, demonstrating its potential to improve Li–S battery performance.
中文翻译:
用于 Li–S 电池的 Prussian Blue 模拟框架主机
锂硫 (Li-S) 电池具有较高的理论能量密度 (∼2600 Wh kg–1),有望成为下一代储能的产物。然而,由于多硫化物穿梭效应造成的容量损失和动力学缓慢导致的能源效率差,阻碍了实际应用。为了克服这些挑战,我们开发了一种新型硫主材料,其特点是源自普鲁士蓝类似物的高度多孔凹面纳米立方体。通过控制退火条件,我们实现了高表面积(高达 248 m2 g–1),这增强了多硫化物吸附,从而减少了硫的溶解并最大限度地减少了循环过程中阴极容量的损失。操作符拉曼光谱显示,这种材料还提供协同催化作用,降低 Li-S 电池内的极化/过电位。优化后的材料可在高硫负载、低 E/S 比和长期循环中出色的容量保持性下延长电池寿命,展示了其提高 Li-S 电池性能的潜力。
更新日期:2024-11-12
中文翻译:
用于 Li–S 电池的 Prussian Blue 模拟框架主机
锂硫 (Li-S) 电池具有较高的理论能量密度 (∼2600 Wh kg–1),有望成为下一代储能的产物。然而,由于多硫化物穿梭效应造成的容量损失和动力学缓慢导致的能源效率差,阻碍了实际应用。为了克服这些挑战,我们开发了一种新型硫主材料,其特点是源自普鲁士蓝类似物的高度多孔凹面纳米立方体。通过控制退火条件,我们实现了高表面积(高达 248 m2 g–1),这增强了多硫化物吸附,从而减少了硫的溶解并最大限度地减少了循环过程中阴极容量的损失。操作符拉曼光谱显示,这种材料还提供协同催化作用,降低 Li-S 电池内的极化/过电位。优化后的材料可在高硫负载、低 E/S 比和长期循环中出色的容量保持性下延长电池寿命,展示了其提高 Li-S 电池性能的潜力。