当前位置:
X-MOL 学术
›
Laser Photonics Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Near‐Infrared Dual‐Band Frequency Comb Generation from a Silicon Resonator
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2024-11-11 , DOI: 10.1002/lpor.202301366 Keyi Zhong, Yaojing Zhang, Shuangyou Zhang, Yuanfei Zhang, Yuan Li, Yue Qin, Yi Wang, Jose M. Chavez Boggio, Xiankai Sun, Chester Shu, Pascal Del'Haye, Hon Ki Tsang
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2024-11-11 , DOI: 10.1002/lpor.202301366 Keyi Zhong, Yaojing Zhang, Shuangyou Zhang, Yuanfei Zhang, Yuan Li, Yue Qin, Yi Wang, Jose M. Chavez Boggio, Xiankai Sun, Chester Shu, Pascal Del'Haye, Hon Ki Tsang
Benefitting from the mature, cost‐effective, and scalable manufacturing capabilities of complementary metal‐oxide‐semiconductor (CMOS) technology, silicon photonics has facilitated the seamless and monolithic integration of diverse functionalities, including optical sources, modulators, and photodetectors. Microresonators can generate multiple coherent optical frequency comb lines and serve as optical sources. However, at the telecom band, silicon suffers from two‐photon absorption and free‐carrier absorption, which severely hampers the realization of microcombs from a single silicon chip at telecom wavelengths until now. In this paper, a novel approach is presented and demonstrated with near‐infrared dual‐band frequency combs from a multimode silicon resonator. With a single pumping configuration, dual‐band combs are generated from the interaction between the pump and Raman Stokes fields by involving two different optical mode families but with similar group velocities. It is observed that the pump power required to generate dual‐band combs is as low as 0.7 mW. The work in bringing telecom microcombs to the silicon platform will advance silicon photonics for the next generation of monolithically integrated technology based on a single silicon chip, enabling new possibilities for further exploring silicon photonics‐based applications in optical telecommunications, sensing, and quantum metrology in the telecom band using a monolithic single silicon chip.
中文翻译:
从硅谐振器生成近红外双频带频率梳
得益于互补金属氧化物半导体 (CMOS) 技术的成熟、经济高效且可扩展的制造能力,硅光子学促进了各种功能的无缝和单片集成,包括光源、调制器和光电探测器。微谐振器可以产生多个相干的光频梳线并用作光源。然而,在电信频段,硅受到双光子吸收和自由载流子吸收的影响,这严重阻碍了迄今为止在电信波长下从单个硅芯片实现微梳。在本文中,提出了一种新方法,并演示了来自多模硅谐振器的近红外双频梳。使用单个泵浦配置,双频带梳子由泵浦场和拉曼斯托克斯场之间的相互作用产生,涉及两个不同的光学模式系列,但具有相似的群速度。据观察,生成双频梳所需的泵浦功率低至 0.7 mW。将电信微梳引入硅平台的工作将推动硅光子学用于基于单硅芯片的下一代单片集成技术,为进一步探索基于硅光子学的电信、传感和量子计量应用提供新的可能性使用单片硅芯片在电信频段。
更新日期:2024-11-11
中文翻译:
从硅谐振器生成近红外双频带频率梳
得益于互补金属氧化物半导体 (CMOS) 技术的成熟、经济高效且可扩展的制造能力,硅光子学促进了各种功能的无缝和单片集成,包括光源、调制器和光电探测器。微谐振器可以产生多个相干的光频梳线并用作光源。然而,在电信频段,硅受到双光子吸收和自由载流子吸收的影响,这严重阻碍了迄今为止在电信波长下从单个硅芯片实现微梳。在本文中,提出了一种新方法,并演示了来自多模硅谐振器的近红外双频梳。使用单个泵浦配置,双频带梳子由泵浦场和拉曼斯托克斯场之间的相互作用产生,涉及两个不同的光学模式系列,但具有相似的群速度。据观察,生成双频梳所需的泵浦功率低至 0.7 mW。将电信微梳引入硅平台的工作将推动硅光子学用于基于单硅芯片的下一代单片集成技术,为进一步探索基于硅光子学的电信、传感和量子计量应用提供新的可能性使用单片硅芯片在电信频段。