Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Photo-assisted epitaxial growth from nanoparticles to enhance multi-materialization for advanced surface functionalization
Nanoscale ( IF 5.8 ) Pub Date : 2024-11-11 , DOI: 10.1039/d4nr03112a Masayuki Fukuda, Yuuki Kitanaka, Tomohiko Nakajima
Nanoscale ( IF 5.8 ) Pub Date : 2024-11-11 , DOI: 10.1039/d4nr03112a Masayuki Fukuda, Yuuki Kitanaka, Tomohiko Nakajima
To meet the requirements of freeform objects, a wide range of highly designable resin-based materials has been created, highlighting the need for low-temperature ceramic deposition methods for surface functionalization. Photo-assisted chemical solution deposition (PCSD), an efficient technique for low-temperature ceramic growth, is used to fabricate thin films via photochemical and photothermal effects. The hybrid-solution-incorporated PCSD (HS-PCSD), in which a hybrid-solution comprising metal–organic compounds and nanoparticles is used in PCSD, has attracted considerable interest as it enables deposition at reduced temperatures and accelerated rates. However, the crystal growth processes in the HS-PCSD remain underexplored, which hinders the design of films using this method. In this study, we quantitatively evaluated the photocrystallization of ceramic thin films that were fabricated under various HS-PCSD conditions. We determined that the laser intensity at the reaction interface must exceed a threshold for epitaxial growth through dangling bond photoactivation and photothermal atomic migration to compete with crystal nucleation growth. We also identified that the particle growth during photocrystallization occurred because of amorphous-phase crystallization and not grain boundary migration. Through these quantitative analyses, we obtained insights into ways to achieve true multi-materialization with desirable physical properties in HS-PCSD.
中文翻译:
纳米颗粒的光辅助外延生长以增强多物质化以实现高级表面功能化
为了满足自由形态物体的要求,已经创造了各种高度可设计的树脂基材料,突出了低温陶瓷沉积方法进行表面功能化的需求。光辅助化学溶液沉积 (PCSD) 是一种用于低温陶瓷生长的有效技术,用于通过光化学和光热效应制造薄膜。杂化溶液掺入 PCSD (HS-PCSD) 在 PCSD 中使用了包含金属-有机化合物和纳米颗粒的杂化溶液,由于它能够在更低的温度和更快的速率下沉积,因此引起了相当大的兴趣。然而,HS-PCSD 中的晶体生长过程仍未得到充分探索,这阻碍了使用这种方法的薄膜设计。在这项研究中,我们定量评估了在各种 HS-PCSD 条件下制造的陶瓷薄膜的光结晶。我们确定反应界面处的激光强度必须超过通过悬垂键光活化和光热原子迁移的外延生长阈值,以与晶体成核生长竞争。我们还确定,光结晶过程中颗粒的生长是由于非晶相结晶而不是晶界迁移而发生的。通过这些定量分析,我们深入了解了在 HS-PCSD 中实现具有理想物理特性的真正多物质化的方法。
更新日期:2024-11-15
中文翻译:
纳米颗粒的光辅助外延生长以增强多物质化以实现高级表面功能化
为了满足自由形态物体的要求,已经创造了各种高度可设计的树脂基材料,突出了低温陶瓷沉积方法进行表面功能化的需求。光辅助化学溶液沉积 (PCSD) 是一种用于低温陶瓷生长的有效技术,用于通过光化学和光热效应制造薄膜。杂化溶液掺入 PCSD (HS-PCSD) 在 PCSD 中使用了包含金属-有机化合物和纳米颗粒的杂化溶液,由于它能够在更低的温度和更快的速率下沉积,因此引起了相当大的兴趣。然而,HS-PCSD 中的晶体生长过程仍未得到充分探索,这阻碍了使用这种方法的薄膜设计。在这项研究中,我们定量评估了在各种 HS-PCSD 条件下制造的陶瓷薄膜的光结晶。我们确定反应界面处的激光强度必须超过通过悬垂键光活化和光热原子迁移的外延生长阈值,以与晶体成核生长竞争。我们还确定,光结晶过程中颗粒的生长是由于非晶相结晶而不是晶界迁移而发生的。通过这些定量分析,我们深入了解了在 HS-PCSD 中实现具有理想物理特性的真正多物质化的方法。