Nature Biomedical Engineering ( IF 26.8 ) Pub Date : 2024-11-11 , DOI: 10.1038/s41551-024-01281-9 Joshua C. Chen, Abdeali Dhuliyawalla, Robert Garcia, Ariadna Robledo, Joshua E. Woods, Fatima Alrashdan, Sean O’Leary, Adam Husain, Anthony Price, Scott Crosby, Michelle M. Felicella, Ajay K. Wakhloo, Patrick Karas, Nicole Provenza, Wayne Goodman, Sameer A. Sheth, Sunil A. Sheth, Jacob T. Robinson, Peter Kan
Minimally invasive neural interfaces can be used to diagnose, manage and treat many disorders, with reduced risks of surgical complications. However, endovascular probes lack access to key cortical, subcortical and spinal targets, and are not typically explantable after endothelialization. Here we report the development and testing, in sheep, of endocisternal neural interfaces that approach brain and spinal cord targets through inner and outer spaces filled with cerebrospinal fluid. Thus, the interfaces gain access to the entire brain convexity, to deep brain structures within the ventricles and to the spinal cord from the spinal subarachnoid space. We combined an endocisternal neural interface with wireless miniature magnetoelectrically powered bioelectronics so that it can be freely navigated percutaneously from the spinal space to the cranial subarachnoid space, and from the cranial subarachnoid space to the ventricles. In sheep, we show recording and stimulation functions, as well as repositioning of the flexible electrodes and explantation of the interface after chronic implantation. Minimally invasive endocisternal bioelectronics may enable chronic and transient therapies, particularly for stroke rehabilitation and epilepsy monitoring.
中文翻译:
用于微创神经刺激和大脑和脊髓记录的脑池内接口
微创神经接口可用于诊断、管理和治疗许多疾病,降低手术并发症的风险。然而,血管内探针无法进入关键的皮质、皮质下和脊柱靶标,并且在内皮化后通常不能移植。在这里,我们报告了绵羊体内脑内神经接口的开发和测试,这些神经接口通过充满脑脊液的内部和外部空间接近大脑和脊髓目标。因此,这些接口可以接触到整个大脑凸面、脑室内的深部大脑结构以及来自脊髓蛛网膜下腔的脊髓。我们将脑内神经接口与无线微型磁电驱动的生物电子学相结合,使其可以从脊髓间隙自由导航至颅网膜下腔,以及从颅网膜下腔自由导航至心室。在绵羊中,我们展示了记录和刺激功能,以及慢性植入后柔性电极的重新定位和界面的外植。微创脑池内生物电子学可能使慢性和短暂治疗成为可能,特别是用于中风康复和癫痫监测。