当前位置: X-MOL 学术Des. Codes Cryptogr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Further investigation on differential properties of the generalized Ness–Helleseth function
Designs, Codes and Cryptography ( IF 1.4 ) Pub Date : 2024-11-10 , DOI: 10.1007/s10623-024-01525-4
Yongbo Xia, Chunlei Li, Furong Bao, Shaoping Chen, Tor Helleseth

Let n be an odd positive integer, p be an odd prime with \(p\equiv 3\pmod 4\), \(d_{1} = {{p^{n}-1}\over {2}} -1 \) and \(d_{2} =p^{n}-2\). The function defined by \(f_u(x)=ux^{d_{1}}+x^{d_{2}}\) is called the generalized Ness–Helleseth function over \(\mathbb {F}_{p^n}\), where \(u\in \mathbb {F}_{p^n}\). It was initially studied by Ness and Helleseth in the ternary case. In this paper, for \(p^n \equiv 3 \pmod 4\) and \(p^n \ge 7\), we provide the necessary and sufficient condition for \(f_u(x)\) to be an APN function. In addition, for each u satisfying \(\chi (u+1) = \chi (u-1)\), the differential spectrum of \(f_u(x)\) is investigated, and it is expressed in terms of some quadratic character sums of cubic polynomials, where \(\chi (\cdot )\) denotes the quadratic character of \({\mathbb {F}}_{p^n}\).



中文翻译:


广义 Ness-Helleseth 函数的微分性质的进一步研究



n 为奇数正整数,p 为奇数素数,其中 \(p\equiv 3\pmod 4\),\(d_{1} = {{p^{n}-1}\over {2}} -1 \)\(d_{2} =p^{n}-2\)。\(f_u(x)=ux^{d_{1}}+x^{d_{2}}\) 定义的函数称为 \(\mathbb {F}_{p^n}\) 上的广义 Ness-Helleseth 函数,其中 \(u\in \mathbb {F}_{p^n}\)。它最初是由 Ness 和 Helleseth 在三元情况下研究的。在本文中,对于 \(p^n \equiv 3 \pmod 4\)\(p^n \ge 7\),我们提供了 \(f_u(x)\) 成为 APN 函数的必要和充分条件。此外,对于每个满足 \(\chi (u+1) = \chi (u-1)\)u,研究了 \(f_u(x)\) 的微分谱,它用三次多项式的一些二次字符和表示,其中 \(\chi (\cdot )\) 表示 \({\mathbb {F}}_{p^n}\) 的二次性。

更新日期:2024-11-10
down
wechat
bug