npj Computational Materials ( IF 9.4 ) Pub Date : 2024-11-07 , DOI: 10.1038/s41524-024-01422-3 Pinghui Mo, Yujia Zhang, Zhuoying Zhao, Hanhan Sun, Junhua Li, Dawei Guan, Xi Ding, Xin Zhang, Bo Chen, Mengchao Shi, Duo Zhang, Denghui Lu, Yinan Wang, Jianxing Huang, Fei Liu, Xinyu Li, Mohan Chen, Jun Cheng, Bin Liang, Weinan E, Jiayu Dai, Linfeng Zhang, Han Wang, Jie Liu
Molecular dynamics (MD) is an indispensable atomistic-scale computational tool widely-used in various disciplines. In the past decades, nearly all ab initio MD and machine-learning MD have been based on the general-purpose central/graphics processing units (CPU/GPU), which are well-known to suffer from their intrinsic “memory wall” and “power wall” bottlenecks. Consequently, nowadays MD calculations with ab initio accuracy are extremely time-consuming and power-consuming, imposing serious restrictions on the MD simulation size and duration. To solve this problem, here we propose a special-purpose MD processing unit (MDPU), which could reduce MD time and power consumption by about 103 times (109 times) compared to state-of-the-art machine-learning MD (ab initio MD) based on CPU/GPU, while keeping ab initio accuracy. With significantly-enhanced performance, the proposed MDPU may pave a way for the accurate atomistic-scale analysis of large-size and/or long-duration problems which were impossible/impractical to compute before.
中文翻译:
具有 ab initio 精度的高速低功耗分子动力学处理单元 (MDPU)
分子动力学 (MD) 是各个学科中广泛使用的不可或缺的原子尺度计算工具。在过去的几十年里,几乎所有的 ab initio MD 和机器学习 MD 都基于通用的中央/图形处理单元 (CPU/GPU),众所周知,这些单元存在固有的“内存墙”和“电源墙”瓶颈。因此,如今具有 ab initio 精度的 MD 计算非常耗时和耗电,对 MD 仿真的大小和持续时间造成了严重限制。为了解决这个问题,我们在这里提出了一种专用的 MD 处理单元 (MDPU),与基于 CPU/GPU 的最先进的机器学习 MD (ab initio MD) 相比,它可以将 MD 时间和功耗减少约 103 倍(109 倍),同时保持 ab initio 的准确性。随着性能的显著提高,所提出的 MDPU 可能为以前不可能/不切实际地计算的大尺寸和/或长期问题的准确原子尺度分析铺平道路。