npj Climate and Atmospheric Science ( IF 8.5 ) Pub Date : 2024-11-09 , DOI: 10.1038/s41612-024-00830-y Karam Mansour, Stefano Decesari, Marco Paglione, Silvia Becagli, Matteo Rinaldi
The study proposes an approach to elucidate spatiotemporal mesoscale variations of seawater Dimethylsulfide (DMS) concentrations, the largest natural source of atmospheric sulfur aerosol, based on the Gaussian Process Regression (GPR) machine learning model. Presently, the GPR was trained and evaluated by nested cross-validation across the warm-oligotrophic Mediterranean Sea, a climate hot spot region, leveraging the high-resolution satellite measurements and Mediterranean physical reanalysis together with in-situ DMS observations. The end product is daily gridded fields with a spatial resolution of 0.083° × 0.083° (~9 km) that spans 23 years (1998–2020). Extensive observations of atmospheric methanesulfonic acid (MSA), a typical biogenic secondary aerosol component from DMS oxidation, are consistent with the parameterized high-resolution estimates of sea-to-air DMS flux (FDMS). This represents substantial progress over existing coarse-resolution DMS global maps which do not accurately depict the seasonal patterns of MSA in the Mediterranean atmospheric boundary layer.
中文翻译:
嵌套交叉验证高斯过程模拟温暖贫营养地中海海水中的二甲基硫醚中尺度变化
该研究提出了一种基于高斯过程回归 (GPR) 机器学习模型来阐明海水二甲基硫化物 (DMS) 浓度的时空中尺度变化,这是大气中硫气溶胶的最大天然来源。目前,GPR 是通过在气候热点地区温暖寡营养地中海进行嵌套交叉验证来训练和评估的,利用高分辨率卫星测量和地中海物理再分析以及原位 DMS 观测。最终产品是空间分辨率为 0.083° × 0.083° (~9 km) 的每日网格化场,时间跨度为 23 年(1998-2020 年)。大气甲磺酸 (MSA) 是 DMS 氧化产生的一种典型的生物二次气溶胶成分,对大气甲磺酸 (MSA) 的广泛观测与海空 DMS 通量 (FDMS) 的参数化高分辨率估计一致。这代表了与现有的粗分辨率 DMS 全球地图相比的重大进步,这些地图不能准确描绘地中海大气边界层中 MSA 的季节性模式。