当前位置:
X-MOL 学术
›
Water Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Adjusting oxidation pathways via fine-tuning atomic ratios in window-opening MOF membranes for efficient self-cleaning
Water Research ( IF 11.4 ) Pub Date : 2024-11-10 , DOI: 10.1016/j.watres.2024.122783 Hui Zhang, Junjie Yang, Zhiyu Sun, Yinkun Sun, Guanjin Liu, Dongwei Lu, Jun Ma
Water Research ( IF 11.4 ) Pub Date : 2024-11-10 , DOI: 10.1016/j.watres.2024.122783 Hui Zhang, Junjie Yang, Zhiyu Sun, Yinkun Sun, Guanjin Liu, Dongwei Lu, Jun Ma
Peroxymonosulfate (PMS) can be used as a green oxidant to mitigate catalytic membranes fouling and restore filtration performance through advanced oxidation processes (AOP). However, the adjustment of oxidation pathways and the understanding of underlying mechanisms for efficient cleaning without sacrificing the filtration performance need to be studied systematically. We optimized the membranes microenvironment via thermal modification from 25 °C to 400 °C below the catalyst ZIF-8 framework's decomposition temperature. The modified membranes have a doubled pure water flux (158.3 LMH bar−1) and remain rejection rates due to intact ZIF-8 framework structure with “window-opening” effect. The methyl dissociation and self-catalyzed graphitization were regulated by changing temperature, resulting in adjustable nonradical pathway proportion (correlated with the C/Zn atomic ratio at 0.96). The enhanced nonradical pathway targeted attacks on electron-rich regions of organic compounds, resulting in efficient cleaning and almost complete flux recovery (99.3 %). The theoretical simulations revealed that methyl groups dissociation and graphitization significantly influence the electron density and adsorption energy at active sites for tunable oxidation pathways and enhanced catalytic performance. Our work offers a rational strategy to improve both filtration and catalytic performance in catalytic membranes. The enhanced understanding of oxidation mechanisms guides the design of designing efficient AOP membrane cleaning systems.
中文翻译:
通过微调开窗式 MOF 膜中的原子比来调整氧化途径,以实现高效的自清洁
过氧一硫酸盐 (PMS) 可用作绿色氧化剂,通过高级氧化工艺 (AOP) 减轻催化膜污染并恢复过滤性能。然而,需要系统地研究氧化途径的调整和在不牺牲过滤性能的情况下实现有效清洁的潜在机制的理解。我们通过热改性在催化剂 ZIF-8 框架分解温度以下 25 °C 至 400 °C 范围内优化膜微环境。改性膜具有双倍的纯水通量 (158.3 LMH bar-1),并且由于具有“开窗”效应的完整 ZIF-8 框架结构而保持截留率。甲基解离和自催化石墨化受温度变化的调节,导致可调节的非自由基途径比例(与 0.96 的 C/Zn 原子比相关)。增强的非自由基途径针对有机化合物的富电子区域进行攻击,从而实现高效清洁和几乎完全的助焊剂回收 (99.3 %)。理论模拟表明,甲基解离和石墨化显着影响活性位点的电子密度和吸附能,以实现可调氧化途径和增强的催化性能。我们的工作为提高催化膜的过滤和催化性能提供了一种合理的策略。对氧化机制的深入了解指导了设计高效的 AOP 膜清洁系统的设计。
更新日期:2024-11-15
中文翻译:
通过微调开窗式 MOF 膜中的原子比来调整氧化途径,以实现高效的自清洁
过氧一硫酸盐 (PMS) 可用作绿色氧化剂,通过高级氧化工艺 (AOP) 减轻催化膜污染并恢复过滤性能。然而,需要系统地研究氧化途径的调整和在不牺牲过滤性能的情况下实现有效清洁的潜在机制的理解。我们通过热改性在催化剂 ZIF-8 框架分解温度以下 25 °C 至 400 °C 范围内优化膜微环境。改性膜具有双倍的纯水通量 (158.3 LMH bar-1),并且由于具有“开窗”效应的完整 ZIF-8 框架结构而保持截留率。甲基解离和自催化石墨化受温度变化的调节,导致可调节的非自由基途径比例(与 0.96 的 C/Zn 原子比相关)。增强的非自由基途径针对有机化合物的富电子区域进行攻击,从而实现高效清洁和几乎完全的助焊剂回收 (99.3 %)。理论模拟表明,甲基解离和石墨化显着影响活性位点的电子密度和吸附能,以实现可调氧化途径和增强的催化性能。我们的工作为提高催化膜的过滤和催化性能提供了一种合理的策略。对氧化机制的深入了解指导了设计高效的 AOP 膜清洁系统的设计。