当前位置:
X-MOL 学术
›
Energy Storage Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A gated highly variable pseudocapacitor based on redox-window control (G-CAPode)
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-11-07 , DOI: 10.1016/j.ensm.2024.103872 Ahmed Bahrawy, Przemyslaw Galek, Christin Gellrich, Nick Niese, Julia Grothe, Stefan Kaskel
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-11-07 , DOI: 10.1016/j.ensm.2024.103872 Ahmed Bahrawy, Przemyslaw Galek, Christin Gellrich, Nick Niese, Julia Grothe, Stefan Kaskel
Iontronic architectures operate via multiple ions or redox processes mimicking neural systems capable to operate with complex ions and biological transmitters with high energy efficiency. Recently, ultracapacitors have emerged as novel iontronic switchable devices with a high on/off ratio. We propose a novel iontronic device offering flexible control of the current output of a switchable electrochemical capacitor diode (CAPode) by introducing an additional “gate” electrode. This device mimics field-effect transistor (FET) semiconductors in controlling current output and recovers energy consumed during the forward charging, marking a significant breakthrough. A recently developed unidirectional CAPode system (Ni3 Bi2 S2 @Ni I 1 mol L-1 KOH I AC@Ni) serves as the “working” capacitor (W-Cap) in the novel architecture. The proposed G-CAPode (gate-controlled CAPode) features a third voltage-controlled connection between the “gate” and the counter electrode of the W-Cap. By varying this third voltage channel the electrodes of W-Cap are shifted in potential toward negative or positive potential windows. Hence, by external voltage control the rectification ratios and blocking efficacy can be tuned which is essential for fully controlling the output signal in logic gates. A new circuit monitors the current and potential distribution of the NOT gate: The G-CAPode system exhibits transistor-like characteristics with a −1.2 V bias. This investigation highlights the versatility of the G-CAPode system across applications where transistor-like behavior and accurate current regulation are beneficial, promising advancements in ionologic devices, sensors, and energy storage systems.
中文翻译:
一种基于氧化还原窗口控制的门控高可变伪电容器 (G-CAPode)
Iontronic 架构通过多个离子或氧化还原过程运行,模拟能够以高能效处理复杂离子和生物递质的神经系统。最近,超级电容器已成为具有高开/关比的新型离子电子可切换器件。我们提出了一种新颖的离子电子器件,通过引入额外的“栅极”电极,灵活控制可切换电化学电容器二极管 (CAPode) 的电流输出。该器件模仿场效应晶体管 (FET) 半导体来控制电流输出,并回收正向充电过程中消耗的能量,这是一项重大突破。最近开发的单向 CAPode 系统 (Ni3Bi2S2@Ni I 1 mol L-1 KOH I AC@Ni) 在新颖的结构中用作“工作”电容器 (W-Cap)。提议的 G-CAPode(栅极控制 CAPode)在“栅极”和 W-Cap 的对电极之间具有第三个电压控制连接。通过改变第三个电压通道,W-Cap 的电极在电位上向负电位或正电位窗口移动。因此,通过外部电压控制,可以调整整流比和阻断效率,这对于完全控制逻辑门中的输出信号至关重要。新电路监控 NOT 门的电流和电位分布:G-CAPode 系统具有类似晶体管的特性,偏置电压为 −1.2 V。这项研究强调了 G-CAPode 系统在类似晶体管的行为和精确的电流调节有益的应用中的多功能性,有望在离子器件、传感器和储能系统方面取得进步。
更新日期:2024-11-07
中文翻译:
一种基于氧化还原窗口控制的门控高可变伪电容器 (G-CAPode)
Iontronic 架构通过多个离子或氧化还原过程运行,模拟能够以高能效处理复杂离子和生物递质的神经系统。最近,超级电容器已成为具有高开/关比的新型离子电子可切换器件。我们提出了一种新颖的离子电子器件,通过引入额外的“栅极”电极,灵活控制可切换电化学电容器二极管 (CAPode) 的电流输出。该器件模仿场效应晶体管 (FET) 半导体来控制电流输出,并回收正向充电过程中消耗的能量,这是一项重大突破。最近开发的单向 CAPode 系统 (Ni3Bi2S2@Ni I 1 mol L-1 KOH I AC@Ni) 在新颖的结构中用作“工作”电容器 (W-Cap)。提议的 G-CAPode(栅极控制 CAPode)在“栅极”和 W-Cap 的对电极之间具有第三个电压控制连接。通过改变第三个电压通道,W-Cap 的电极在电位上向负电位或正电位窗口移动。因此,通过外部电压控制,可以调整整流比和阻断效率,这对于完全控制逻辑门中的输出信号至关重要。新电路监控 NOT 门的电流和电位分布:G-CAPode 系统具有类似晶体管的特性,偏置电压为 −1.2 V。这项研究强调了 G-CAPode 系统在类似晶体管的行为和精确的电流调节有益的应用中的多功能性,有望在离子器件、传感器和储能系统方面取得进步。