当前位置:
X-MOL 学术
›
Phys. Rev. B
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tuning terahertz magnons in a mixed van der Waals antiferromagnet
Physical Review B ( IF 3.2 ) Pub Date : 2024-11-08 , DOI: 10.1103/physrevb.110.174414 F. Le Mardelé, I. Mohelsky, D. Jana, A. Pawbake, J. Dzian, W.-L. Lee, K. Raju, R. Sankar, C. Faugeras, M. Potemski, M. E. Zhitomirsky, M. Orlita
Physical Review B ( IF 3.2 ) Pub Date : 2024-11-08 , DOI: 10.1103/physrevb.110.174414 F. Le Mardelé, I. Mohelsky, D. Jana, A. Pawbake, J. Dzian, W.-L. Lee, K. Raju, R. Sankar, C. Faugeras, M. Potemski, M. E. Zhitomirsky, M. Orlita
Alloying stands out as a pivotal technological method employed across various compounds, be they metallic, magnetic, or semiconducting, serving to fine-tune their properties to meet specific requirements. Ternary semiconductors represent a prominent example of such alloys. They offer fine-tuning of electronic bands, the band gap in particular, thus granting the technology of semiconductor heterostructures devices, key elements in current electronics and optoelectronics. In the realm of magnetically ordered systems, akin to electronic bands in solids, spin waves exhibit characteristic dispersion relations, featuring sizable magnon gaps in many antiferromagnets. The engineering of the magnon gap constitutes a relevant direction in current research on antiferromagnets, aiming to leverage their distinct properties for terahertz technologies, spintronics, or magnonics. In this study, we showcase the tunability of the magnon gap across the terahertz spectral range within an alloy comprising representative semiconducting van der Waals antiferromagnets F e P S 3 and N i P S 3 . These constituents share identical in-plane crystal structures, magnetic unit cells, and the direction of the magnetic anisotropy, but differ in the amplitude and sign of the latter. Altogether these attributes result in the wide tunability of the magnon gap in the F e 1 − 𝑥 N i 𝑥 P S 3 alloy in which the magnetic order is imposed by the stronger, perpendicular anisotropy of iron.
中文翻译:
在混合范德华反铁磁体中调谐太赫兹磁体
合金化是各种化合物(无论是金属、磁性还是半导体)采用的关键技术方法,用于微调其性能以满足特定要求。三元半导体是此类合金的一个突出例子。它们提供电子频带的微调,特别是带隙,从而赋予了半导体异质结构器件的技术,这是当前电子学和光电子学中的关键元件。在磁有序系统领域,类似于固体中的电子带,自旋波表现出特征色散关系,在许多反铁磁体中具有相当大的磁振子间隙。磁振子间隙的工程构成了当前反铁磁体研究的相关方向,旨在将其独特的特性用于太赫兹技术、自旋电子学或磁振子学。在这项研究中,我们展示了由代表性半导体范德华反铁磁体FePS3 和 NiPS3 组成的合金中磁振子间隙在太赫兹光谱范围内的可调性。这些成分具有相同的面内晶体结构、磁性晶胞和磁各向异性的方向,但后者的振幅和符号不同。总而言之,这些属性导致了 Fe1−xNixPS3 合金中磁振子间隙的宽可调性,其中磁序由更强的垂直各向异性铁施加。
更新日期:2024-11-08
中文翻译:
在混合范德华反铁磁体中调谐太赫兹磁体
合金化是各种化合物(无论是金属、磁性还是半导体)采用的关键技术方法,用于微调其性能以满足特定要求。三元半导体是此类合金的一个突出例子。它们提供电子频带的微调,特别是带隙,从而赋予了半导体异质结构器件的技术,这是当前电子学和光电子学中的关键元件。在磁有序系统领域,类似于固体中的电子带,自旋波表现出特征色散关系,在许多反铁磁体中具有相当大的磁振子间隙。磁振子间隙的工程构成了当前反铁磁体研究的相关方向,旨在将其独特的特性用于太赫兹技术、自旋电子学或磁振子学。在这项研究中,我们展示了由代表性半导体范德华反铁磁体