当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biopolymers as three-dimensional structural binders for nickel-cobalt sulfide supercapacitor electrodes
Electrochimica Acta ( IF 5.5 ) Pub Date : 2024-11-10 , DOI: 10.1016/j.electacta.2024.145345
Jiamei Li, Zhe Chen, Fuqiang Chen, Zhijin Zhu, Tongwei Shen, Yunxiang Chen, Yaliang Chen, Yanqun Shao

Ion diffusion and electron transfer are hindered by commonly used hydrophobic binders, which directly affect the electrochemical performance of the electrodes. Hydrophilic binders are selected to efficaciously solve the problem of relatively low actual specific capacitance and rate performance in the field of nickel cobalt sulfide electrode materials. In the paper, RuCoNiS electrodes were prepared using polytetrafluoroethylene (PTFE), carboxymethyl cellulose (CMC), xanthan gum (XG), and chitosan (CS) as binders. The surface wettability, morphological structure, specific surface area, and electrochemical performance of electrodes with different binders were analyzed by XRD, SEM, BET, CV, GCD, and EIS, etc. It's shown that the synthesis of CoNi2S is confirmed by XRD. The XPS results verify the existence of RuO2 and Ni2+/Ni3+ and Co2+/Co3+ redox couples. A cross-linked network structure is formed on the surface of the RuCoNiS by CS. The CS-RuCoNiS electrode has the largest specific surface area and microporosity. Ion migration in the electrolyte is facilitated by the excellent wettability of the CS-RuCoNiS electrode. The CS-RuCoNiS electrode reachs 1193.52 F g-1, which is 1.74 times higher than that of the PTFE-RuCoNiS electrode at 1 A g-1. The CS binder with its three-dimensional structure has the highest ionic conductivity of 2.29 × 10-4 S cm-1, a lower Rct, good cycling stability with a capacity retention of 84.3% after 5000 cycles at 200 mV s-1, and excellent rate performance of 85.6%. It can provide a practical application in supercapacitors.

中文翻译:


生物聚合物作为镍钴硫化物超级电容器电极的三维结构粘合剂



常用的疏水粘合剂阻碍了离子扩散和电子转移,这直接影响电极的电化学性能。选择亲水性粘合剂,有效解决了硫化镍钴电极材料领域实际比电容和倍率性能相对较低的问题。在本文中,以聚四氟乙烯 (PTFE)、羧甲基纤维素 (CMC)、黄原胶 (XG) 和壳聚糖 (CS) 为粘合剂制备了 RuCoNiS 电极。采用 XRD、SEM、BET、CV、GCD 和 EIS 等分析了不同粘合剂电极的表面润湿性、形貌结构、比表面积和电化学性能。结果表明 CoNi2S 的合成是通过 XRD 证实的。XPS 结果验证了 RuO2 和 Ni2+/Ni3+ 和 Co2+/Co3+ 氧化还原对的存在。CS 在 RuCoNiS 表面形成交联网络结构。CS-RuCoNiS 电极具有最大的比表面积和微孔率。CS-RuCoNiS 电极出色的润湿性促进了电解质中的离子迁移。CS-RuCoNiS 电极达到 1193.52 F g-1,比 PTFE-RuCoNiS 电极在 1 A g-1 时高 1.74 倍。具有三维结构的 CS 粘合剂具有最高的离子电导率,× 10-4 S cm-1 时具有 2.29 的离子电导率,Rct 较低,循环稳定性好,在 200 mV s-1 下循环 5000 次后容量保持率为 84.3%,倍率性能为 85.6%。它可以在超级电容器中提供实际应用。
更新日期:2024-11-10
down
wechat
bug