当前位置:
X-MOL 学术
›
Electrochim. Acta
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Faradically dominant pseudocapacitive graphitic carbon nitride nanosheets decorated with strontium tungstate nanospheres for supercapattery device and hydrogen evaluation reaction
Electrochimica Acta ( IF 5.5 ) Pub Date : 2024-11-09 , DOI: 10.1016/j.electacta.2024.145339 Ehtisham Umar, M. Waqas Iqbal, Fozia Shaheen, Hameed Ullah, Rizwan Wahab
Electrochimica Acta ( IF 5.5 ) Pub Date : 2024-11-09 , DOI: 10.1016/j.electacta.2024.145339 Ehtisham Umar, M. Waqas Iqbal, Fozia Shaheen, Hameed Ullah, Rizwan Wahab
Transition metal oxides are promising for hydrogen evolution reaction (HER) and hybrid energy storage due to their excellent redox properties, inherent electrochemical activity, and abundant electroactive sites. A significant challenge limiting their broader application is their intrinsic low electrical conductivity and reduced electrochemical stability. For hybrid energy storage devices and HER, a highly electrochemical active material is designed from 2D graphitic carbon nitride nanosheet (g-C3 N4 ) networks anchored with strontium tungstate nanospheres (SrWO4 /g-C3 N4 ). The excellent performance observed can be attributed to several factors: multiple electro-active sites, well-defined electronic structures, and interaction between SrWO4 nanosphere on the surface of g-C3 N4 nanosheets surface. The supercapattery device exhibited superior energy density (65.4 W h/kg) and power density (1240.5 W/kg) in comparison. In addition, the theoretical technique was utilized to provide a detailed analysis of the experimental findings. In addition, the SrWO4 /g-C3 N4 material demonstrates a low overpotential of 129 mV at -10 mA/cm2 , along with Tafel slope values of 67 mV/dec for the HER, and it exhibits excellent cyclic stability. This study presents an advanced method for designing SrWO4 /g-C3 N4 -based supercapacitors and HER platforms with nanoscale structures and optimized interface arrangements.
中文翻译:
用钨酸锶纳米球装饰的微弱优势伪电容石墨氮化碳纳米片,用于超电容器装置和氢评估反应
过渡金属氧化物由于其优异的氧化还原性能、固有的电化学活性和丰富的电活性位点,有望用于析氢反应 (HER) 和混合储能。限制其更广泛应用的一个重大挑战是其固有的低导电性和降低的电化学稳定性。对于混合储能器件和 HER,由锚定钨酸锶纳米球 (SrWO4/g-C3N4) 的 2D 石墨氮化碳纳米片 (g-C3N4) 网络设计了一种高电化学活性材料。观察到的优异性能可归因于几个因素:多个电活性位点、明确的电子结构以及 SrWO4 纳米球在 g-C3N4 纳米片表面的相互作用。相比之下,超级电容器装置表现出优异的能量密度 (65.4 W h/kg) 和功率密度 (1240.5 W/kg)。此外,利用理论技术对实验结果进行了详细分析。此外,SrWO4/g-C3N4 材料在 -10 mA/cm2 时表现出 129 mV 的低过电位,以及 HER 的 67 mV/dec 的塔菲尔斜率值,并且表现出优异的循环稳定性。本研究提出了一种先进的方法,用于设计具有纳米级结构和优化界面排列的基于 SrWO4/g-C3N4 的超级电容器和 HER 平台。
更新日期:2024-11-09
中文翻译:
用钨酸锶纳米球装饰的微弱优势伪电容石墨氮化碳纳米片,用于超电容器装置和氢评估反应
过渡金属氧化物由于其优异的氧化还原性能、固有的电化学活性和丰富的电活性位点,有望用于析氢反应 (HER) 和混合储能。限制其更广泛应用的一个重大挑战是其固有的低导电性和降低的电化学稳定性。对于混合储能器件和 HER,由锚定钨酸锶纳米球 (SrWO4/g-C3N4) 的 2D 石墨氮化碳纳米片 (g-C3N4) 网络设计了一种高电化学活性材料。观察到的优异性能可归因于几个因素:多个电活性位点、明确的电子结构以及 SrWO4 纳米球在 g-C3N4 纳米片表面的相互作用。相比之下,超级电容器装置表现出优异的能量密度 (65.4 W h/kg) 和功率密度 (1240.5 W/kg)。此外,利用理论技术对实验结果进行了详细分析。此外,SrWO4/g-C3N4 材料在 -10 mA/cm2 时表现出 129 mV 的低过电位,以及 HER 的 67 mV/dec 的塔菲尔斜率值,并且表现出优异的循环稳定性。本研究提出了一种先进的方法,用于设计具有纳米级结构和优化界面排列的基于 SrWO4/g-C3N4 的超级电容器和 HER 平台。