当前位置:
X-MOL 学术
›
Energy Environ. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interfacial coordination utilizing chelating ligands for operationally stable perovskite solar modules
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-08 , DOI: 10.1039/d4ee02803a Bingkun Tian, Peikun Zhang, Tianjun Liu, Weicun Chu, Yuyang Long, Peng Xu, Ying Jiang, Jinping Zhang, Yajing Tang, Xiangnan Sun, Riming Nie, Xiaoming Zhao, Wanlin Guo, Zhuhua Zhang
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-08 , DOI: 10.1039/d4ee02803a Bingkun Tian, Peikun Zhang, Tianjun Liu, Weicun Chu, Yuyang Long, Peng Xu, Ying Jiang, Jinping Zhang, Yajing Tang, Xiangnan Sun, Riming Nie, Xiaoming Zhao, Wanlin Guo, Zhuhua Zhang
Perovskite solar cells (PSCs) feature a higher maximum theoretical efficiency and a lower cost than silicon-based solar cells, while also offering additional advantages of being flexible and transparent. However, the commercialization of PSCs remains a great challenge due to rapidly degraded efficiency and stability when scaled up to industrial sizes. Here, we develop an interfacial coordination strategy utilizing chelating ligands to address both the efficiency and stability issues on a large scale. The ligands can form a layer of Pb(II) coordination polymers with robust chemical bonds that not only effectively passivate surface defects but also serve as a tightly adhered capping layer for protecting the perovskite surfaces. Then, the as-fabricated solar module with an area of up to 31.6 cm2 exhibits a projected T80 lifetime of over 9000 hours under 1-sun illumination at 25 °C. Moreover, the ligands introduce suitable energy levels between the perovskite and electron charge transport layer to facilitate charge transfer across the interface. As a result, we simultaneously achieve a power conversion efficiency of 25.0% for a 0.16 cm2 single cell, and 22.6% for a 31.6 cm2 module, comparable to the efficiencies achieved by state-of-the-art solar modules of similar sizes.
中文翻译:
利用螯合配体的界面配位实现运行稳定的钙钛矿太阳能组件
钙钛矿太阳能电池 (PSC) 具有比硅基太阳能电池更高的最大理论效率和更低的成本,同时还具有灵活和透明的额外优势。然而,由于 PSC 的商业化在放大到工业规模时效率和稳定性会迅速下降,因此仍然面临巨大挑战。在这里,我们开发了一种利用螯合配体的界面配位策略来大规模解决效率和稳定性问题。配体可以形成一层具有强大化学键的 Pb(II) 配位聚合物,不仅可以有效地钝化表面缺陷,还可以作为紧密粘附的覆盖层来保护钙钛矿表面。然后,面积达 31.6 cm2 的预制太阳能组件在 25 °C 的 1 个太阳照射下,预计 T80 寿命超过 9000 小时。 此外,配体在钙钛矿和电子电荷传输层之间引入合适的能级,以促进电荷跨界面的转移。因此,我们同时实现了 0.16 cm2 单电池 25.0% 的功率转换效率,31.6 cm2 组件的功率转换效率为 22.6%,与类似尺寸的先进太阳能组件所实现的效率相当。
更新日期:2024-11-08
中文翻译:
利用螯合配体的界面配位实现运行稳定的钙钛矿太阳能组件
钙钛矿太阳能电池 (PSC) 具有比硅基太阳能电池更高的最大理论效率和更低的成本,同时还具有灵活和透明的额外优势。然而,由于 PSC 的商业化在放大到工业规模时效率和稳定性会迅速下降,因此仍然面临巨大挑战。在这里,我们开发了一种利用螯合配体的界面配位策略来大规模解决效率和稳定性问题。配体可以形成一层具有强大化学键的 Pb(II) 配位聚合物,不仅可以有效地钝化表面缺陷,还可以作为紧密粘附的覆盖层来保护钙钛矿表面。然后,面积达 31.6 cm2 的预制太阳能组件在 25 °C 的 1 个太阳照射下,预计 T80 寿命超过 9000 小时。 此外,配体在钙钛矿和电子电荷传输层之间引入合适的能级,以促进电荷跨界面的转移。因此,我们同时实现了 0.16 cm2 单电池 25.0% 的功率转换效率,31.6 cm2 组件的功率转换效率为 22.6%,与类似尺寸的先进太阳能组件所实现的效率相当。