当前位置:
X-MOL 学术
›
Dalton Trans.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The bonding situations in ruthenium chalcogenonitrosyl compounds: a physical reasoning
Dalton Transactions ( IF 3.5 ) Pub Date : 2024-11-08 , DOI: 10.1039/d4dt02680b Richard F. Cardoso, Vinícius A. Glitz, Renato L. T. Parreira, Giovanni F. Caramori, Luis H. S. Lacerda
Dalton Transactions ( IF 3.5 ) Pub Date : 2024-11-08 , DOI: 10.1039/d4dt02680b Richard F. Cardoso, Vinícius A. Glitz, Renato L. T. Parreira, Giovanni F. Caramori, Luis H. S. Lacerda
This research presents, for the first time, a comprehensive and rigorous investigation of ruthenium(II) chalcogenonitrosyl bonding situations in two sets of coordination compounds: [Ru(NE)Cl2(LOEt)] (1a–4a) and [Ru(NE)Cl2(LOEt)]− (1b–4b), where E = O, S, Se, Te. Prior to and following the one-electron reduction, the Ru–NE bonding situations were subjected to analysis. The calculated geometric parameters indicate that both the Ru–NE and N–E bond lengths are susceptible to variation depending on the nature of the chalcogen employed. Furthermore, the results demonstrate that the one-electron reduction process serves to diminish the NE double bond character. The generalized Kohn–Sham energy decomposition analysis (GKS-EDA) was conducted to illustrate the Ru–NE bonding scenarios prior to and following the one-electron reduction. The results provide valuable insights into the nature of Ru(II)–NE (E = O, S, Se, Te) bonds, the influence of chalcogens on ruthenium compounds, as well as how the one-electron reduction affects the release of NE groups. The main findings indicate that the total interaction energy, prior to the one-electron reduction, is three to four times more stabilizing than in the reduced analogs, confirming that the reduction unequivocally enhances the lability of the Ru–NE bond even when heavier chalcogen analogues are employed.
中文翻译:
钌硫生亚硝基化合物中的键合情况:物理推理
这项研究首次对两组配位化合物中的钌 (II) 硫族亚硝基键合情况进行了全面而严格的研究:[Ru(NE)Cl2(LOEt)] (1a–4a) 和 [Ru(NE)Cl2(LOEt)]]− (1b–4b)),其中 E = O、S、Se、Te。在单电子还原之前和之后,对 Ru-NE 键合情况进行了分析。计算的几何参数表明,Ru-NE 和 N-E 键长都容易受到变化的影响,具体取决于所采用的硫属物质的性质。此外,结果表明,单电子还原过程用于降低 N E 双键特性。进行了广义 Kohn-Sham 能量分解分析 (GKS-EDA) 以说明单电子还原之前和之后的 Ru-NE 键合场景。这些结果为 Ru(II)-NE (E = O, S, Se, Te) 键的性质、硫族化合物对钌化合物的影响以及单电子还原如何影响 NE 基团的释放提供了有价值的见解。主要结果表明,在单电子还原之前,总相互作用能的稳定性是还原类似物的三到四倍,这证实了即使使用较重的硫族类似物,还原也明确地增强了 Ru-NE 键的不稳定性。
更新日期:2024-11-08
中文翻译:
钌硫生亚硝基化合物中的键合情况:物理推理
这项研究首次对两组配位化合物中的钌 (II) 硫族亚硝基键合情况进行了全面而严格的研究:[Ru(NE)Cl2(LOEt)] (1a–4a) 和 [Ru(NE)Cl2(LOEt)]]− (1b–4b)),其中 E = O、S、Se、Te。在单电子还原之前和之后,对 Ru-NE 键合情况进行了分析。计算的几何参数表明,Ru-NE 和 N-E 键长都容易受到变化的影响,具体取决于所采用的硫属物质的性质。此外,结果表明,单电子还原过程用于降低 N E 双键特性。进行了广义 Kohn-Sham 能量分解分析 (GKS-EDA) 以说明单电子还原之前和之后的 Ru-NE 键合场景。这些结果为 Ru(II)-NE (E = O, S, Se, Te) 键的性质、硫族化合物对钌化合物的影响以及单电子还原如何影响 NE 基团的释放提供了有价值的见解。主要结果表明,在单电子还原之前,总相互作用能的稳定性是还原类似物的三到四倍,这证实了即使使用较重的硫族类似物,还原也明确地增强了 Ru-NE 键的不稳定性。