当前位置: X-MOL 学术Water Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Improved anaerobic digestion of food waste under ammonia stress by side-stream hydrogen domestication
Water Research ( IF 11.4 ) Pub Date : 2024-11-08 , DOI: 10.1016/j.watres.2024.122770
Yi Wang, Haoyang Li, Keke Ding, Xueyu Zhao, Miao Liu, Linji Xu, Li Gu, Jinze Li, Lin Li, Qiang He, Jianjun Liang

High ammonia concentration inhibits archaea's activity, causing the accumulation of H2 and acetate, which suppresses methane production in anaerobic digestion (AD). The study aimed to enhance microbial hydrogen metabolism through a side-stream hydrogen domestication (SHD) strategy, which involves applying hydrogen stimulation to a portion of the sludge separately. SHD maintained a stable methane yield of 407.5 mL/g VS at a high total ammonia nitrogen (TAN) concentration of 3.1 g/L. In contrast, the control group gradually decreased and stopped methane production at a TAN concentration of 2.3 g/L. Further analysis using enzyme activity assays, flow cytometry, and metagenomics explored the mechanisms underlying ammonia tolerance of SHD-treated group. SHD reshaped the microbial community, enriching homoacetogens and Methanosaeta-dominated methanogenic archaea. Key metabolic pathways including homoacetogenesis, butyrate degradation, propionate degradation, and methane production were enhanced. The activity of related enzymes also increased. Gene abundance in energy-generating pathways, such as glycolysis, was enhanced, ensuring adequate ATP production. Additionally, the high gene abundance of ion transport systems contributed to regulating proton imbalance and supplementing intracellular K+. This study provides important insights and practical guidance for developing novel techniques in the field of anaerobic digestion.

中文翻译:


通过侧流氢驯化改善氨胁迫下食物垃圾的厌氧消化



高氨浓度会抑制古细菌的活性,导致 H2 和乙酸盐的积累,从而抑制厌氧消化 (AD) 中甲烷的产生。该研究旨在通过侧流氢驯化 (SHD) 策略增强微生物氢代谢,该策略涉及分别对一部分污泥进行氢刺激。SHD 保持了稳定的甲烷产率,为 407.5 mL/g,而总氨氮 (TAN) 浓度高达 3.1 g/L。相比之下,对照组逐渐减少并在 TAN 浓度为 2.3 g/L 时停止甲烷产生。使用酶活性测定、流式细胞术和宏基因组学进行进一步分析,探讨了 SHD 处理组氨耐受性的潜在机制。SHD 重塑了微生物群落,富集了同乙原和甲烷aeta主导的产甲烷古细菌。包括同源乙酸生成、丁酸盐降解、丙酸盐降解和甲烷产生在内的关键代谢途径得到增强。相关酶的活性也增加。能量产生途径(如糖酵解)中的基因丰度得到增强,确保足够的 ATP 产生。此外,离子转运系统的高基因丰度有助于调节质子失衡和补充细胞内 K+。本研究为厌氧消化领域的新技术开发提供了重要的见解和实践指导。
更新日期:2024-11-08
down
wechat
bug