当前位置:
X-MOL 学术
›
Environ. Sci. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Fire-Induced Multiple Changes in Electron Transfer Properties of Peat Soil Organic Matter: The Role of Functional Groups, Graphitic Carbon, and Iron
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2024-11-08 , DOI: 10.1021/acs.est.4c06586 Peijie Yang, Shuai Wang, Tianran Sun, Tao Jiang, Yifan Cui, Guangliang Liu, Yingying Guo, Yanwei Liu, Ligang Hu, Jianbo Shi, Qinghua Zhang, Yongguang Yin, Yong Cai, Guibin Jiang
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2024-11-08 , DOI: 10.1021/acs.est.4c06586 Peijie Yang, Shuai Wang, Tianran Sun, Tao Jiang, Yifan Cui, Guangliang Liu, Yingying Guo, Yanwei Liu, Ligang Hu, Jianbo Shi, Qinghua Zhang, Yongguang Yin, Yong Cai, Guibin Jiang
Peatland fires induced changes in electron transfer properties and relevant electroactive structures of peat soil organic matter (PSOM) remain ambiguous, impeding comprehension of postfire biogeochemical processes. Here, we revealed temperature-dependent electron exchange capacity (EEC) of PSOM dynamics through simulated peat soil burning (150–500 °C), which extremely changed postfire microbial Fe-nanoparticles reduction and methanogenesis. EEC diminished significantly (60–75% loss) due to phenolic-quinone moieties depletion with increasing temperature, regardless of oxygen availability. The final EEC in oxic burning surpassed that of anoxic burning by 1.5 times, attributed to additional quinones from oxygen incorporation. Notably, EEC exhibited heat resistance up to 200 °C and stabilized above 350 °C. Additionally, fire reshaped the EEC-relevant redox-active moieties. Heterocyclic-N generated from burning predominantly contributed to the electron-accepting capacity (EAC) alongside quinones, while phenolic moieties and bonded Fe(II) enhanced the electron-donating capacity (EDC). However, the preferential binding of heterocyclic-N to Fe(II) restricted the EDC of Fe(II). Interestingly, the decrease in EAC declined its electron-shuttling effects in microbial Fe nanoparticle reduction, but fire-induced graphitic carbon formation increased the electrical conductivity (EC) of PSOM, promoting electron transfer. Further, enhanced EC may facilitate methanogenesis in postfire peatlands. These findings advance our understanding of elemental biogeochemical cycles and greenhouse emission mechanisms in postfire peatlands.
中文翻译:
火引起的泥炭土有机质电子传递特性的多重变化:官能团、石墨碳和铁的作用
泥炭地火灾引起的电子转移特性的变化和泥炭土有机质 (PSOM) 的相关电活性结构仍然模棱两可,阻碍了对火灾后生物地球化学过程的理解。在这里,我们通过模拟泥炭土燃烧 (150-500 °C) 揭示了 PSOM 动力学的温度依赖性电子交换能力 (EEC),这极大地改变了火后微生物 Fe 纳米颗粒的还原和甲烷生成。由于酚酸醌部分随着温度的升高而耗尽,无论氧气可用性如何,EEC 都会显着降低(损失 60-75%)。含氧燃烧的最终 EEC 比缺氧燃烧高出 1.5 倍,这归因于氧掺入产生的额外醌。值得注意的是,EEC 在 200 °C 以下表现出耐热性,并在 350 °C 以上稳定下来。 此外,火灾重塑了与 EEC 相关的氧化还原活性部分。燃烧产生的杂环 N 与醌一起主要贡献电子接受能力 (EAC),而酚类部分和键合 Fe(II) 增强了电子供体能力 (EDC)。然而,杂环 N 与 Fe(II) 的优先结合限制了 Fe(II) 的 EDC。有趣的是,EAC 的降低降低了其在微生物 Fe 纳米颗粒还原中的电子穿梭效应,但火诱导的石墨碳形成增加了 PSOM 的电导率 (EC),促进了电子转移。此外,增强的 EC 可能促进火灾后泥炭地的甲烷生成。这些发现促进了我们对火灾后泥炭地元素生物地球化学循环和温室气体排放机制的理解。
更新日期:2024-11-08
中文翻译:
火引起的泥炭土有机质电子传递特性的多重变化:官能团、石墨碳和铁的作用
泥炭地火灾引起的电子转移特性的变化和泥炭土有机质 (PSOM) 的相关电活性结构仍然模棱两可,阻碍了对火灾后生物地球化学过程的理解。在这里,我们通过模拟泥炭土燃烧 (150-500 °C) 揭示了 PSOM 动力学的温度依赖性电子交换能力 (EEC),这极大地改变了火后微生物 Fe 纳米颗粒的还原和甲烷生成。由于酚酸醌部分随着温度的升高而耗尽,无论氧气可用性如何,EEC 都会显着降低(损失 60-75%)。含氧燃烧的最终 EEC 比缺氧燃烧高出 1.5 倍,这归因于氧掺入产生的额外醌。值得注意的是,EEC 在 200 °C 以下表现出耐热性,并在 350 °C 以上稳定下来。 此外,火灾重塑了与 EEC 相关的氧化还原活性部分。燃烧产生的杂环 N 与醌一起主要贡献电子接受能力 (EAC),而酚类部分和键合 Fe(II) 增强了电子供体能力 (EDC)。然而,杂环 N 与 Fe(II) 的优先结合限制了 Fe(II) 的 EDC。有趣的是,EAC 的降低降低了其在微生物 Fe 纳米颗粒还原中的电子穿梭效应,但火诱导的石墨碳形成增加了 PSOM 的电导率 (EC),促进了电子转移。此外,增强的 EC 可能促进火灾后泥炭地的甲烷生成。这些发现促进了我们对火灾后泥炭地元素生物地球化学循环和温室气体排放机制的理解。