当前位置:
X-MOL 学术
›
ACS Energy Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Scalable Microscale Artificial Synapses of Lead Halide Perovskite with Femtojoule Energy Consumption
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-11-08 , DOI: 10.1021/acsenergylett.4c02360 Jeroen J. de Boer, Bruno Ehrler
ACS Energy Letters ( IF 19.3 ) Pub Date : 2024-11-08 , DOI: 10.1021/acsenergylett.4c02360 Jeroen J. de Boer, Bruno Ehrler
The efficient conduction of mobile ions in halide perovskites is highly promising for artificial synapses (or memristive devices), devices with a conductivity that can be varied by applying a bias voltage. Here we address the challenge of downscaling halide perovskite-based artificial synapses to achieve low energy consumption and allow high-density integration. We fabricate halide perovskite artificial synapses in a back-contacted architecture to achieve microscale devices despite the high solubility of halide perovskites in polar solvents that are commonly used in lithography. The energy consumption of a conductance change of the device is as low as 640 fJ, among the lowest reported for two-terminal halide perovskite artificial synapses so far. Moreover, the high resistance of the device up to hundreds of megaohms, low operating voltage of 100 mV and simple two-terminal architecture enable implementation in highly dense crossbar arrays. These arrays could potentially show orders of magnitude lower energy consumption for computation compared to conventional digital computers.
中文翻译:
具有飞焦耳能耗的卤化铅钙钛矿的可扩展微尺度人工突触
卤化物钙钛矿中移动离子的高效传导对于人工突触(或忆阻器件)非常有前途,这些器件的电导率可以通过施加偏置电压来改变。在这里,我们解决了缩小基于卤化物钙钛矿的人工突触以实现低能耗并允许高密度集成的挑战。尽管卤化物钙钛矿在光刻中常用的极性溶剂中的溶解度很高,但我们在背接触结构中制造卤化物钙钛矿人工突触以实现微型器件。该器件电导变化的能耗低至 640 fJ,是迄今为止报道的双末端卤化物钙钛矿人工突触的最低能耗之一。此外,该器件具有高达数百兆欧的高电阻、100 mV 的低工作电压和简单的双端子架构,可在高密度交叉开关阵列中实现。与传统数字计算机相比,这些数组可能会显示计算能耗降低几个数量级。
更新日期:2024-11-08
中文翻译:
具有飞焦耳能耗的卤化铅钙钛矿的可扩展微尺度人工突触
卤化物钙钛矿中移动离子的高效传导对于人工突触(或忆阻器件)非常有前途,这些器件的电导率可以通过施加偏置电压来改变。在这里,我们解决了缩小基于卤化物钙钛矿的人工突触以实现低能耗并允许高密度集成的挑战。尽管卤化物钙钛矿在光刻中常用的极性溶剂中的溶解度很高,但我们在背接触结构中制造卤化物钙钛矿人工突触以实现微型器件。该器件电导变化的能耗低至 640 fJ,是迄今为止报道的双末端卤化物钙钛矿人工突触的最低能耗之一。此外,该器件具有高达数百兆欧的高电阻、100 mV 的低工作电压和简单的双端子架构,可在高密度交叉开关阵列中实现。与传统数字计算机相比,这些数组可能会显示计算能耗降低几个数量级。