Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dual Gold Nanostructures-Based Stretchable Electrochemiluminescence Sensors for Hydrogen Peroxide Monitoring in Endothelial Mechanotransduction
ACS Sensors ( IF 8.2 ) Pub Date : 2024-11-07 , DOI: 10.1021/acssensors.4c02421 Hao Liu, Qian Wang, Shi-Bo Cheng, Wei Mao, Lebao Mao, Xiuhua Zhang, Shengfu Wang, Wei-Hua Huang, Miao-Miao Chen
ACS Sensors ( IF 8.2 ) Pub Date : 2024-11-07 , DOI: 10.1021/acssensors.4c02421 Hao Liu, Qian Wang, Shi-Bo Cheng, Wei Mao, Lebao Mao, Xiuhua Zhang, Shengfu Wang, Wei-Hua Huang, Miao-Miao Chen
Hydrogen peroxide (H2O2) release during blood flow is commonly provoked by the cyclic stretch and dynamic shear stress of endothelial cells and is of vital significance for maintaining vascular function. Flexible and stretchable electrochemical sensors show great capability in retrieving mechanical stimulation-induced H2O2 variation; however, cell secretions, especially electroactive constituents’ interferences, remain a big concern for sensing accuracy. Herein, we developed a stretchable electrochemiluminescence (ECL) sensor by synthesizing L012-reduced gold nanospheres and decorating them onto a polydimethylsiloxane film-supported gold nanotubes substrate (Au NTs/PDMS) to form dual gold nanostructure-modified meshwork interface. Given the specific reaction between L012 and H2O2, the as-prepared Au-L012/Au NTs/PDMS exhibited outstanding selectivity toward H2O2 quantification. Through culturing human umbilical vein endothelial cells (HUVECs), real-time monitoring of transient H2O2 release from mechanically sensitive HUVECs in stretching states was realized. This work successfully incorporated the ECL sensing model into in situ cellular sensing, therefore expanding the application mode of the ECL approach for health care and biomedical investigation.
中文翻译:
基于双金纳米结构的可拉伸电化学发光传感器用于内皮机械转导中的过氧化氢监测
血流过程中过氧化氢 (H2O2) 的释放通常是由内皮细胞的循环拉伸和动态剪切应力引起的,对维持血管功能至关重要。柔性和可拉伸的电化学传感器在检索机械刺激诱导的 H2O2 变化方面表现出强大的能力;然而,细胞分泌物,尤其是电活性成分的干扰,仍然是影响传感精度的一个大问题。在此,我们开发了一种可拉伸的电化学发光 (ECL) 传感器,通过合成 L012 还原的金纳米球并将它们装饰在聚二甲基硅氧烷薄膜支持的金纳米管衬底 (Au NTs/PDMS) 上,形成双金纳米结构修饰的网状界面。鉴于 L012 与 H2O2 之间的特异性反应,所制备的 Au-L012/Au NTs/PDMS 对 H2O2 定量表现出优异的选择性。通过培养人脐静脉内皮细胞 (HUVECs),实现了对拉伸状态下机械敏感 HUVECs 瞬时 H2O2 释放的实时监测。这项工作成功地将 ECL 传感模型整合到原位细胞传感中,从而扩展了 ECL 方法在医疗保健和生物医学研究中的应用模式。
更新日期:2024-11-08
中文翻译:
基于双金纳米结构的可拉伸电化学发光传感器用于内皮机械转导中的过氧化氢监测
血流过程中过氧化氢 (H2O2) 的释放通常是由内皮细胞的循环拉伸和动态剪切应力引起的,对维持血管功能至关重要。柔性和可拉伸的电化学传感器在检索机械刺激诱导的 H2O2 变化方面表现出强大的能力;然而,细胞分泌物,尤其是电活性成分的干扰,仍然是影响传感精度的一个大问题。在此,我们开发了一种可拉伸的电化学发光 (ECL) 传感器,通过合成 L012 还原的金纳米球并将它们装饰在聚二甲基硅氧烷薄膜支持的金纳米管衬底 (Au NTs/PDMS) 上,形成双金纳米结构修饰的网状界面。鉴于 L012 与 H2O2 之间的特异性反应,所制备的 Au-L012/Au NTs/PDMS 对 H2O2 定量表现出优异的选择性。通过培养人脐静脉内皮细胞 (HUVECs),实现了对拉伸状态下机械敏感 HUVECs 瞬时 H2O2 释放的实时监测。这项工作成功地将 ECL 传感模型整合到原位细胞传感中,从而扩展了 ECL 方法在医疗保健和生物医学研究中的应用模式。