当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bipolar Membranes With Controlled, Microscale 3D Junctions Enhance the Rates of Water Dissociation and Formation
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-11-09 , DOI: 10.1002/aenm.202404285 Tianyue Gao, Leanna Schulte, Langqiu Xiao, Eisuke Yamamoto, Amy S. Metlay, Colton J. Sheehan, Sariah Marth, Heemin Park, Sayantan Sasmal, Francisco J. Galang, Chulsung Bae, Adam Z. Weber, Shannon W. Boettcher, Thomas E. Mallouk
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-11-09 , DOI: 10.1002/aenm.202404285 Tianyue Gao, Leanna Schulte, Langqiu Xiao, Eisuke Yamamoto, Amy S. Metlay, Colton J. Sheehan, Sariah Marth, Heemin Park, Sayantan Sasmal, Francisco J. Galang, Chulsung Bae, Adam Z. Weber, Shannon W. Boettcher, Thomas E. Mallouk
A soft lithographic method is developed for making bipolar membranes (BPMs) with catalytic junctions formed from arrays of vertically oriented microscale cylinders. The membranes are cast from reusable polydimethylsiloxane (PDMS) molds made from silicon masters, which are fabricated on 2″ to 4″ wafer scales by nanosphere lithography. High‐aspect‐ratio junctions are made on a length scale similar to the thickness of optimized catalyst layers for water dissociation, creating a platform for probing the dual effects of catalysis and local electric field at the microscale BPM junction. Optimized polymer materials and nanoscale metal oxide catalysts are used in this study. 3D BPMs are tested under reverse and forward bias conditions, exhibiting superior performance relative to their 2D counterparts. Under forward bias in H2 ‐O2 fuel cells, 3D BPMs achieve a current density of 1500 mA cm−2 , ≈7 times higher than 2D membranes made from the same materials.
中文翻译:
具有受控微尺度 3D 液络部的双极膜提高了水的解离和形成速率
开发了一种软光刻方法,用于制造具有催化结的双极膜 (BPM),该膜由垂直方向的微型圆柱体阵列形成。这些膜由可重复使用的聚二甲基硅氧烷 (PDMS) 模具铸造而成,这些模具由硅母版制成,通过纳米球光刻技术在 2 英寸至 4 英寸的晶圆尺度上制造。高纵横比结的长度尺度类似于用于水解离的优化催化剂层的厚度,为探测微尺度 BPM 结处催化和局部电场的双重效应创造了一个平台。本研究使用了优化的聚合物材料和纳米级金属氧化物催化剂。3D BPM 在反向和正向偏置条件下进行测试,相对于 2D 同类产品表现出卓越的性能。在 H2-O2 燃料电池的正向偏压下,3D BPM 的电流密度为 1500 mA cm-2,比由相同材料制成的 2D 膜高 ≈7 倍。
更新日期:2024-11-09
中文翻译:
具有受控微尺度 3D 液络部的双极膜提高了水的解离和形成速率
开发了一种软光刻方法,用于制造具有催化结的双极膜 (BPM),该膜由垂直方向的微型圆柱体阵列形成。这些膜由可重复使用的聚二甲基硅氧烷 (PDMS) 模具铸造而成,这些模具由硅母版制成,通过纳米球光刻技术在 2 英寸至 4 英寸的晶圆尺度上制造。高纵横比结的长度尺度类似于用于水解离的优化催化剂层的厚度,为探测微尺度 BPM 结处催化和局部电场的双重效应创造了一个平台。本研究使用了优化的聚合物材料和纳米级金属氧化物催化剂。3D BPM 在反向和正向偏置条件下进行测试,相对于 2D 同类产品表现出卓越的性能。在 H2-O2 燃料电池的正向偏压下,3D BPM 的电流密度为 1500 mA cm-2,比由相同材料制成的 2D 膜高 ≈7 倍。