当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Modulating Local Oxygen Coordination to Achieve Highly Reversible Anionic Redox and Negligible Voltage Decay in O2‐Type Layered Cathodes for Li‐Ion Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-11-09 , DOI: 10.1002/aenm.202404276 Xiaoxia Yang, Kai Wang, Jilu Zhang, Hang Li, Hao Liu, Tian Zhao, Xinyue Zhai, Qin Wang, Chengjun Fan, Martin Etter, Sylvio Indris, Weibo Hua, Xiaoping Ouyang
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-11-09 , DOI: 10.1002/aenm.202404276 Xiaoxia Yang, Kai Wang, Jilu Zhang, Hang Li, Hao Liu, Tian Zhao, Xinyue Zhai, Qin Wang, Chengjun Fan, Martin Etter, Sylvio Indris, Weibo Hua, Xiaoping Ouyang
O2‐type layered oxides have emerged as promising cathode materials for high‐energy lithium‐ion batteries, offering a solution to mitigate voltage decay through reversible transition metal (TM) migration between TM and Li layers during cycling. However, achieving a fully reversible oxygen redox remains a significant challenge. Here, this is addressed by introducing Li─O─Li configurations in the layered structure of Li0.85□0.15 [Li0.08□0.04 Ni0.22 Mn0.66 ]O2 (O2‐LLNMO), where □ represents vacancies. This adjustment alters the redox‐active oxygen environment and increases the energy gap between the O 2p nonbonding and TM─O antibonding bands. As a result, the contribution of lattice oxygen to capacity is significantly enhanced, improving the reversibility of oxygen redox processes. The O2‐LLNMO cathode demonstrates minimal voltage decay (0.13 mV per cycle) and excellent cycling stability, retaining 95.8% of its capacity after 100 cycles. A novel strategy is presented to design high‐performance layered oxides with stable anionic redox activity, advancing the development of next‐generation lithium‐ion batteries.
中文翻译:
调节局部氧配位,在锂离子电池的 O2 型层状阴极中实现高度可逆的阴离子氧化还原和可忽略不计的电压衰减
O2 型层状氧化物已成为高能锂离子电池的有前途的正极材料,提供了一种解决方案,可通过循环过程中 TM 层和 Li 层之间的可逆过渡金属 (TM) 迁移来减轻电压衰减。然而,实现完全可逆的氧氧化还原仍然是一个重大挑战。在这里,通过在 Li0.85□0.15[Li0.08□0.04Ni0.22Mn0.66]O2 (O2-LLNMO) 的层状结构中引入 Li─O─Li 构型来解决这一问题,其中 □ 代表空位。这种调整改变了氧化还原-活性氧环境,并增加了 O 2p 非键合带和 TM─O 反键带之间的能隙。因此,晶格氧对容量的贡献显着增强,从而提高了氧氧化还原过程的可逆性。O2-LLNMO 阴极表现出最小的电压衰减(每个周期 0.13 mV)和出色的循环稳定性,在 100 次循环后仍保留 95.8% 的容量。提出了一种新颖的策略来设计具有稳定阴离子氧化还原活性的高性能层状氧化物,从而推动下一代锂离子电池的开发。
更新日期:2024-11-09
中文翻译:
调节局部氧配位,在锂离子电池的 O2 型层状阴极中实现高度可逆的阴离子氧化还原和可忽略不计的电压衰减
O2 型层状氧化物已成为高能锂离子电池的有前途的正极材料,提供了一种解决方案,可通过循环过程中 TM 层和 Li 层之间的可逆过渡金属 (TM) 迁移来减轻电压衰减。然而,实现完全可逆的氧氧化还原仍然是一个重大挑战。在这里,通过在 Li0.85□0.15[Li0.08□0.04Ni0.22Mn0.66]O2 (O2-LLNMO) 的层状结构中引入 Li─O─Li 构型来解决这一问题,其中 □ 代表空位。这种调整改变了氧化还原-活性氧环境,并增加了 O 2p 非键合带和 TM─O 反键带之间的能隙。因此,晶格氧对容量的贡献显着增强,从而提高了氧氧化还原过程的可逆性。O2-LLNMO 阴极表现出最小的电压衰减(每个周期 0.13 mV)和出色的循环稳定性,在 100 次循环后仍保留 95.8% 的容量。提出了一种新颖的策略来设计具有稳定阴离子氧化还原活性的高性能层状氧化物,从而推动下一代锂离子电池的开发。