Plant Biotechnology Journal ( IF 10.1 ) Pub Date : 2024-11-08 , DOI: 10.1111/pbi.14512 Hua Shi, Jinhui Chen, Minfeng Lu, Wenyan Li, Wanjun Deng, Ping Kang, Xi Zhang, Qiong Luo, Mo Wang
Ferredoxins (Fds), a category of small iron-sulphur [2Fe-2S] cluster-containing proteins, localize in plastids and are required for distributing electrons from photosystem I (PSI) to downstream metabolic reactions (Hanke and Mulo, 2013). Based on their expression pattern and redox potential, Fds in higher plants are classified into leaf (photosynthetic) and root (non-photosynthetic) types. In rice, five typical Fd genes have been identified, among which OsFd1 encodes the primary photosynthetic Fd. Knockout of OsFd1 caused rice lethal at seedling stage (He et al., 2020), indicating an essential role of OsFd1 in rice photosynthetic electron transport.
We recently reported that knockout of OsFd4, the major rice non-photosynthetic type Fd, increased rice resistance against the blight bacteria Xanthomonas oryzae pv. oryzae (Xoo) (Lu et al., 2023). To determine the immune function of OsFd1 and the possibility of OsFd1 to be a target for genomic modification to enhance rice resistance, we performed CRISPR/Cas9-mediated OsFd1 editing in Zhonghua 11 (ZH11) and obtained two loss-of-function alleles Osfd1-1 and Osfd1-2 carrying a 5-bp deletion and 1-bp insertion, respectively, in the coding region (Figure 1a). Consistent with the previous report (He et al., 2020), both alleles were lethal at young seedling stage under the 12-h light/dark cycle condition (Figure 1b). However, when grown under constant dark, the etiolated seedlings of Osfd1-1 and Osfd1-2 grew similarly as ZH11 (Figure 1b), indicating that the lethality of Osfd1 is light-dependent. We also found that OsFd1 transcript levels and OsFd1 protein abundance were significantly increased under light (Figure S1). When the leaves detached from 10-day-old ZH11 and Osfd1-1 seedlings grown under light cycle were stained with H2DCFDA, a visible cellular indicator for reactive oxygen species (ROS), clear fluorescent signals were observed in the chloroplasts of Osfd1-1, but not in those of ZH11 (Figure 1c), indicating that OsFd1 deletion leads to constitutive ROS accumulation in chloroplasts. Similar to Arabidopsis Fd2-knockout mutant, both Osfd1-1 and Osfd1-2 accumulated significantly higher basal levels of jasmonic acid (JA) and JA-Ile than ZH11 (Figure 1d and Figure S2).
ROS production and JA/JA-Ile accumulation contribute to rice immunity (Liu and Zhang, 2022; Ma et al., 2022). To investigate OsFd1's function in rice defense, we transformed OsFd1-overexpression (OE) construct into the callus of heterozygous Osfd1-1 and obtained two independent OEOsFd1 transgenic lines in homozygous Osfd1-1 background (Osfd1-1 OEOsFd1, Figure S3a). OEOsFd1 completely rescued the seedling lethal phenotype of Osfd1-1 (Figure S3b,c). When inoculated with the rice blast fungus Magnaporthe oryzae (M. oryzae), the Osfd1-1 OEOsFd1 lines supported significantly more M. oryzae growth than ZH11 (Figure S3d). We then challenged the Osfd1-1 OEOsFd1 lines with Xoo and found that both lines displayed significantly longer blight lesions (Figure S3e,f) and supported more Xoo growth (Figure S3g), indicating that OEOsFd1 compromised rice defence against the pathogens. Moreover, chitin- and flg22-induced ROS burst were severely reduced in the OEOsFd1 lines compared with ZH11 (Figure S4). Taken together, our data showed that OsFd1 plays a negative role in rice defence against the pathogens.
The seedling lethality caused by loss function of OsFd1 limits its application in rice disease resistance breeding. Therefore, we sought to identify weak alleles of Osfd1 that can confer robust resistance without growth penalty. By further screening the CRISPR/Cas9-mediated editing progenies, we identified another two homozygous Osfd1 alleles Osfd1-3 and Osfd1-4 containing 3-bp and 15-bp in-frame deletions. The mutation forms are named as OsFd1Δ3bp and OsFd1Δ15bp, which result in 1 and 5 amino acids deletions, respectively (Figure 1e). Notably, both mutants exhibited WT-like growth and no obvious defects in the agronomic traits (Figure 1f and Figure S5). When challenged with M. oryzae and Xoo strains, Osfd1-4, rather than Osfd1-3, displayed significantly enhanced resistance compared with ZH11 (Figure 1g–k, Figure S6). Consistently, the increased disease resistance was accompanied by enhanced chitin- and flg22-induced ROS burst (Figure 1l).
Both the OsFd1 variants, OsFd1Δ1aa and OsFd1Δ5aa, carry the amino acids deletion between the chloroplast-localization signal peptides (CSP) and the conserved [2Fe-2S] cluster (Figure 1e), causing no disruption of their chloroplast localization (Figure S7). Fds are shown to form functional dimers to facilitate electron carrying and delivering (Hasan et al., 2002; Iwasaki et al., 2011; Lu et al., 2023). Our yeast two-hybrid assays indicated a strong self-interaction of OsFd1 (Figure S8). Interestingly, OsFd1Δ5aa, but not OsFd1Δ1aa, showed notably decreased self-association (Figure 1m), suggesting that the five-amino acid deletion in OsFd1Δ5aa may compromise OsFd1 dimerization and decrease the efficiency in electron transfer. Consistently, we observed a moderate ROS accumulation in the chloroplasts of Osfd1-4, rather than Osfd1-3 (Figure 1n).
In an attempt to investigate the potential of OsFd1Δ15bp in rice-resistant breeding, we crossed NG9108 (as female parent), a commercial conventional japonica cultivar, with Osfd1-4 (as male parent) and obtained the F2 population. All the tested F2 plants grown normally (Figure S9a), indicating that the OsFd1Δ15bp mutation caused no penalty on growth in different genetic background. When the F2 progenies were inoculated with YN-5, an M. oryzae strain with similar virulence to NG9108 and ZH11, the plants carrying homozygous OsFd1Δ15bp showed increased resistance, compared with those carrying wild-type OsFd1 or heterozygous OsFd1/OsFd1Δ15bp (Figure S9b), indicating that the resistance co-segregates with OsFd1Δ15bp mutation.
Collectively, our results revealed OsFd1's critical functions in rice growth and defence. Notably, a specific truncated form of OsFd1 was characterized to confer rice broad-spectrum resistance without yield penalty. These findings provide a potentiality of utilizing OsFd1 gene-editing in resistance breeding to balance rice growth and defense.
中文翻译:
CRISPR/Cas9 介导的 OsFd1 编辑增强了水稻广谱抗性,而不会降低生长和产量
铁氧还蛋白 (Fds) 是一类含有小铁硫 [2Fe-2S] 簇的蛋白质,位于质体中,是将电子从光系统 I (PSI) 分配到下游代谢反应所必需的(Hanke 和 Mulo,2013)。根据它们的表达模式和氧化还原电位,高等植物中的 Fds 分为叶(光合作用)和根(非光合作用)类型。在水稻中,已经鉴定出 5 个典型的 Fd 基因,其中 OsFd1 编码初级光合 Fd。OsFd1 的敲除导致水稻在苗期致死(He et al., 2020),表明 OsFd1 在水稻光合电子传递中起着重要作用。
我们最近报道了 OsFd4(主要的水稻非光合型 Fd)的敲除增加了水稻对枯萎病细菌 Xanthomonas oryzae pv 的抗性。水稻 (Xoo) (Lu et al., 2023)。为了确定 OsFd1 的免疫功能以及 OsFd1 成为基因组修饰靶标以增强水稻抗性的可能性,我们在中华 11 (ZH11) 中进行了 CRISPR/Cas9 介导的 OsFd1 编辑,并获得了两个功能丧失等位基因 Osfd1-1 和 Osfd1-2,分别在编码区携带 5 bp 缺失和 1 bp 插入(图 1a)。与之前的报告一致(He et al., 2020),在 12 小时光照/黑暗循环条件下,这两个等位基因在幼苗阶段都是致命的(图 1b)。然而,当在持续黑暗下生长时,Osfd1-1 和 Osfd1-2 的黄化幼苗与 ZH11 相似(图 1b),表明 Osfd1 的致死性是光依赖性的。我们还发现 OsFd1 转录水平和 OsFd1 蛋白丰度在光照下显着增加 (图 S1)。当从光循环下生长的 10 日龄 ZH11 和 Osfd1-1 幼苗分离的叶子用活性氧 (ROS) 的可见细胞指示剂 H2DCFDA 染色时,在 Osfd1-1 的叶绿体中观察到清晰的荧光信号,但在 ZH11 的叶绿体中观察到(图 1c),表明 OsFd1 缺失导致组成型 ROS 在叶绿体中积累。 与拟南芥 Fd2 敲除突变体类似,Osfd1-1 和 Osfd1-2 的茉莉酸 (JA) 和 JA-Ile 的基础水平显著高于 ZH11(图 1d 和图 S2)。
ROS 产生和 JA/JA-Ile 积累有助于水稻免疫力(Liu 和 Zhang,2022 年;马等 人,2022 年)。为了研究 OsFd1 在水稻防御中的功能,我们将 OsFd1 过表达 (OE) 构建体转化为杂合 Osfd1-1 的愈伤组织,并在纯合 Osfd1-1 背景下获得了两个独立的 OEOsFd1 转基因系 (Osfd1-1 OEOsFd1,图 S3a)。OEOsFd1 完全挽救了 Osfd1-1 的幼苗致死表型 (图 S3b,c)。当接种稻瘟病菌 Magnaporthe oryzae (M. oryzae) 时,Osfd1-1 OEOsFd1 品系比 ZH11 支持更多的稻瘟病菌生长(图 S3d)。然后,我们用 Xoo 攻击 Osfd1-1 OEOsFd1 品系,发现两个品系都显示出明显更长的枯萎病病变(图 S3e,f)并支持更多的 Xoo 生长(图 S3g),表明 OEOsFd1 损害了水稻对病原体的防御。此外,与 ZH11 相比,OEOsFd1 品系中几丁质和 flg22 诱导的 ROS 爆发严重减少(图 S4)。综上所述,我们的数据表明 OsFd1 在水稻对病原体的防御中起着负作用。
OsFd1 的损失函数引起的幼苗致死性限制了其在水稻抗病育种中的应用。因此,我们试图鉴定 Osfd1 的弱等位基因,这些等位基因可以在没有生长损失的情况下赋予强大的抗性。通过进一步筛选 CRISPR/Cas9 介导的编辑后代,我们鉴定了另外两个纯合 Osfd1 等位基因 Osfd1-3 和 Osfd1-4,其中包含 3 bp 和 15 bp 的框内缺失。突变形式被命名为 OsFd1Δ3bp 和 OsFd1Δ15bp,分别导致 1 个和 5 个氨基酸缺失(图 1e)。值得注意的是,两个突变体都表现出 WT 样生长,农艺性状没有明显的缺陷(图 1f 和图 S5)。当用米分枝杆菌和 Xoo 菌株攻击时,与 ZH11 相比,Osfd1-4 而不是 Osfd1-3 表现出显着增强的抗性(图 1g-k,图 S6)。始终如一地,抗病性增加伴随着几丁质和 flg22 诱导的 ROS 爆发增强(图 1l)。
OsFd1 变体 OsFd1Δ1aa 和 OsFd1Δ5aa 都携带叶绿体定位信号肽 (CSP) 和保守的 [2Fe-2S] 簇之间的氨基酸缺失(图 1e),不会导致其叶绿体定位中断(图 S7)。Fds 显示可形成功能性二聚体以促进电子携带和传递(Hasan et al., 2002;Iwasaki et al., 2011;Lu et al., 2023)。我们的酵母双杂交测定表明 OsFd1 具有很强的自相互作用(图 S8)。有趣的是,OsFd1Δ5aa,而不是 OsFd1Δ1aa,显示出显着降低的自缔合(图 1m),表明 OsFd1Δ5aa 中的 5 个氨基酸缺失可能会损害 OsFd1 二聚化并降低电子转移效率。一致地,我们在 Osfd1-4 的叶绿体中观察到适度的 ROS 积累,而不是 Osfd1-3(图 1n)。
为了研究 OsFd1Δ15bp 在水稻抗性育种中的潜力,我们将商业常规粳稻品种 NG9108 (作为母本) 与 Osfd1-4 (作为雄性亲本) 杂交,获得了 F2 群体。所有测试的 F2 植物都正常生长(图 S9a),表明 OsFd1Δ15bp 突变对不同遗传背景下的生长没有影响。当 F2 后代接种 YN-5(一种与 NG9108 和 ZH11 具有相似毒力的米分枝杆菌菌株)时,携带纯合 OsFd1Δ15bp 的植物与携带野生型 OsFd1 或杂合 OsFd1/OsFd1Δ15bp 的植物相比表现出更高的抗性(图 S9b),表明抗性与 OsFd1Δ15bp 突变共分离。
总的来说,我们的结果揭示了 OsFd1 在水稻生长和防御中的关键功能。值得注意的是,OsFd1 的特异性截短形式被表征为赋予水稻广谱抗性而不会造成产量损失。这些发现为在抗性育种中利用 OsFd1 基因编辑来平衡水稻生长和防御提供了潜力。