当前位置: X-MOL 学术Sci. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Scalable bottom-up synthesis of Co-Ni–doped graphene
Science Advances ( IF 11.7 ) Pub Date : 2024-11-08 , DOI: 10.1126/sciadv.ado8956
Valeria Chesnyak, Daniele Perilli, Mirco Panighel, Alessandro Namar, Alexander Markevich, Thuy An Bui, Aldo Ugolotti, Ayesha Farooq, Matus Stredansky, Clara Kofler, Cinzia Cepek, Giovanni Comelli, Jani Kotakoski, Cristiana Di Valentin, Cristina Africh

Introducing heteroatoms into graphene is a powerful strategy to modulate its catalytic, electronic, and magnetic properties. At variance with the cases of nitrogen (N)– and boron (B)–doped graphene, a scalable method for incorporating transition metal atoms in the carbon (C) mesh is currently lacking, limiting the applicative interest of model system studies. This work presents a during-growth synthesis enabling the incorporation of cobalt (Co) alongside nickel (Ni) atoms in graphene on a Ni(111) substrate. Single atoms are covalently stabilized within graphene double vacancies, with a Co load ranging from 0.07 to 0.22% relative to C atoms, controllable by synthesis parameters. Structural characterization involves variable-temperature scanning tunneling microscopy and ab initio calculations. The Co- and Ni-codoped layer is transferred onto a transmission electron microscopy grid, confirming stability through scanning transmission electron microscopy and electron energy loss spectroscopy. This method holds promise for applications in spintronics, gas sensing, electrochemistry and catalysis, and potential extension to graphene incorporation of similar metals.

中文翻译:


Co-Ni 掺杂石墨烯的可扩展自下而上合成



将杂原子引入石墨烯是调节其催化、电子和磁性的强大策略。与氮 (N) 和硼 (B) 掺杂石墨烯的情况不同,目前缺乏一种在碳 (C) 网格中掺入过渡金属原子的可扩展方法,这限制了模型系统研究的适用性。这项工作提出了一种生长过程中的合成,能够将钴 (Co) 和镍 (Ni) 原子掺入 Ni(111) 衬底上的石墨烯中。单个原子在石墨烯双空位内共价稳定,相对于 C 原子,Co 负载量范围为 0.07% 至 0.22%,可通过合成参数控制。结构表征包括变温扫描隧道显微镜和从头开始计算。Co 和 Ni 共掺杂层被转移到透射电子显微镜网格上,通过扫描透射电子显微镜和电子能量损失光谱确认稳定性。该方法有望应用于自旋电子学、气体传感、电化学和催化,并有可能扩展到类似金属的石墨烯掺入。
更新日期:2024-11-08
down
wechat
bug