当前位置: X-MOL 学术Classical Quant. Grav. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Characterizing gravitational wave detector networks: from A ♯ to cosmic explorer
Classical and Quantum Gravity ( IF 3.6 ) Pub Date : 2024-11-08 , DOI: 10.1088/1361-6382/ad7b99
Ish Gupta, Chaitanya Afle, K G Arun, Ananya Bandopadhyay, Masha Baryakhtar, Sylvia Biscoveanu, Ssohrab Borhanian, Floor Broekgaarden, Alessandra Corsi, Arnab Dhani, Matthew Evans, Evan D Hall, Otto A Hannuksela, Keisi Kacanja, Rahul Kashyap, Sanika Khadkikar, Kevin Kuns, Tjonnie G F Li, Andrew L Miller, Alexander Harvey Nitz, Benjamin J Owen, Cristiano Palomba, Anthony Pearce, Hemantakumar Phurailatpam, Binod Rajbhandari, Jocelyn Read, Joseph D Romano, Bangalore S Sathyaprakash, David H Shoemaker, Divya Singh, Salvatore Vitale, Lisa Barsotti, Emanuele Berti, Craig Cahillane, Hsin-Yu Chen, Peter Fritschel, Carl-Johan Haster, Philippe Landry, Geoffrey Lovelace, David McClelland, Bram J J Slagmolen, Joshua R Smith, Marcelle Soares-Santos, Ling Sun, David Tanner, Hiro Yamamoto, Michael Zucker

Gravitational-wave observations by the laser interferometer gravitational-wave observatory (LIGO) and Virgo have provided us a new tool to explore the Universe on all scales from nuclear physics to the cosmos and have the massive potential to further impact fundamental physics, astrophysics, and cosmology for decades to come. In this paper we have studied the science capabilities of a network of LIGO detectors when they reach their best possible sensitivity, called A , given the infrastructure in which they exist and a new generation of observatories that are factor of 10 to 100 times more sensitive (depending on the frequency), in particular a pair of L-shaped cosmic explorer (CE) observatories (one 40 km and one 20 km arm length) in the US and the triangular Einstein telescope with 10 km arms in Europe. We use a set of science metrics derived from the top priorities of several funding agencies to characterize the science capabilities of different networks. The presence of one or two A observatories in a network containing two or one next generation observatories, respectively, will provide good localization capabilities for facilitating multimessenger astronomy (MMA) and precision measurement of the Hubble parameter. Two CE observatories are indispensable for achieving precise localization of binary neutron star events, facilitating detection of electromagnetic counterparts and transforming MMA. Their combined operation is even more important in the detection and localization of high-redshift sources, such as binary neutron stars, beyond the star-formation peak, and primordial black hole mergers, which may occur roughly 100 million years after the Big Bang. The addition of the Einstein Telescope to a network of two CE observatories is critical for accomplishing all the identified science metrics including the nuclear equation of state, cosmological parameters, the growth of black holes through cosmic history, but also make new discoveries such as the presence of dark matter within or around neutron stars and black holes, continuous gravitational waves from rotating neutron stars, transient signals from supernovae, and the production of stellar-mass black holes in the early Universe. For most metrics the triple network of next generation terrestrial observatories are a factor 100 better than what can be accomplished by a network of three A observatories.

中文翻译:


表征引力波探测器网络:从 A ♯ 到宇宙探测器



激光干涉仪引力波天文台 (LIGO) 和 Virgo 的引力波观测为我们提供了一种新工具,可以在从核物理学到宇宙的所有尺度上探索宇宙,并具有在未来几十年进一步影响基础物理学、天体物理学和宇宙学的巨大潜力。在本文中,我们研究了 LIGO 探测器网络在达到最佳灵敏度(称为 A ♯)时的科学能力,考虑到它们所在的基础设施和灵敏度高 10 到 100 倍(取决于频率)的新一代天文台,特别是一对 L 形宇宙探测器 (CE) 天文台(一个 40 公里和一个 20 公里臂长)在美国和欧洲拥有 10 公里臂的三角形爱因斯坦望远镜。我们使用一组来自多个资助机构的首要任务的科学指标来描述不同网络的科学能力。在包含两个或一个下一代天文台的网络中存在一个或两个 A ♯ 天文台,将为促进多信使天文 (MMA) 和哈勃参数的精确测量提供良好的定位能力。两个 CE 天文台对于实现双中子星事件的精确定位、促进电磁对应物的探测和转换 MMA 是必不可少的。它们的联合操作在探测和定位高红移源(例如双中子星)时更为重要,这些源位于恒星形成峰值之外,以及原始黑洞合并(可能发生在大爆炸后大约 1 亿年)。 将爱因斯坦望远镜添加到由两个 CE 天文台组成的网络中对于完成所有已确定的科学指标至关重要,包括核状态方程、宇宙学参数、宇宙历史中黑洞的生长,而且还有新的发现,例如中子星和黑洞内部或周围存在暗物质, 来自旋转中子星的连续引力波、来自超新星的瞬态信号以及早期宇宙中恒星质量黑洞的产生。对于大多数指标,下一代地面观测站的三重网络比三个 A ♯ 天文台网络所能实现的要高 100 倍。
更新日期:2024-11-08
down
wechat
bug