当前位置:
X-MOL 学术
›
IEEE Trans. Neural Netw. Learn. Syst.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Reinforcement Learning-Based $\mathcal{H}_{\infty }$ Control of 2-D Markov Jump Roesser Systems With Optimal Disturbance Attenuation
IEEE Transactions on Neural Networks and Learning Systems ( IF 10.2 ) Pub Date : 2024-11-06 , DOI: 10.1109/tnnls.2024.3487760 Jiacheng Wu, Bosen Lian, Hongye Su, Yang Zhu
中文翻译:
基于强化学习的 $\mathcal{H}_{\infty }$ 控制具有最优干扰衰减的二维马尔可夫跳跃 Roesser 系统
更新日期:2024-11-06
IEEE Transactions on Neural Networks and Learning Systems ( IF 10.2 ) Pub Date : 2024-11-06 , DOI: 10.1109/tnnls.2024.3487760 Jiacheng Wu, Bosen Lian, Hongye Su, Yang Zhu
中文翻译:
基于强化学习的 $\mathcal{H}_{\infty }$ 控制具有最优干扰衰减的二维马尔可夫跳跃 Roesser 系统