Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Sigmoid Functions, Multiscale Resolution of Singularities, and $hp$-Mesh Refinement
SIAM Review ( IF 10.8 ) Pub Date : 2024-11-07 , DOI: 10.1137/23m1556629 Daan Huybrechs, Lloyd N. Trefethen
SIAM Review ( IF 10.8 ) Pub Date : 2024-11-07 , DOI: 10.1137/23m1556629 Daan Huybrechs, Lloyd N. Trefethen
SIAM Review, Volume 66, Issue 4, Page 683-693, November 2024.
In this short, conceptual paper we observe that closely related mathematics applies in four contexts with disparate literatures: (1) sigmoidal and RBF approximation of smooth functions, (2) rational approximation of analytic functions with singularities, (3) $hp\kern .7pt$-mesh refinement for solution of \pdes, and (4) double exponential (DE) and generalized Gauss quadrature. The relationships start from the change of variables $s = \log(x)$, and they suggest possibilities for new analyses and new methods in several areas. Concerning (2) and (3), we show that both problems feature the same effect of “linear tapering” near the singularity---of clustered poles in rational approximation and of polynomial orders in $hp\kern .7pt$-mesh refinement. Concerning (4), we note that the tapering effect appears here too, and that the change of variables interpretation sheds new light on why the DE and generalized Gauss methods are effective at integrating arbitrary singularities.
中文翻译:
Sigmoid 函数、奇点的多尺度分辨率和 $hp$ 网格细化
SIAM 评论,第 66 卷,第 4 期,第 683-693 页,2024 年 11 月。
在这篇简短的概念性论文中,我们观察到密切相关的数学适用于具有不同文献的四种背景:(1) 平滑函数的 S 形和 RBF 近似,(2) 具有奇点的解析函数的有理近似,(3) \pdes 解的 $hp\kern .7pt$ 网格细化,以及 (4) 双指数 (DE) 和广义高斯求积。这些关系从变量 $s = \log(x)$ 的变化开始,它们提出了在多个领域进行新分析和新方法的可能性。关于 (2) 和 (3),我们表明这两个问题都具有相同的效应,即有理近似中簇极点的奇点附近的“线性锥度”---和 $hp\kern .7pt$-mesh 细化中的多项式阶数。关于(4),我们注意到这里也出现了锥化效应,变量解释的变化为为什么 DE 和广义高斯方法在积分任意奇点方面有效提供了新的视角。
更新日期:2024-11-07
In this short, conceptual paper we observe that closely related mathematics applies in four contexts with disparate literatures: (1) sigmoidal and RBF approximation of smooth functions, (2) rational approximation of analytic functions with singularities, (3) $hp\kern .7pt$-mesh refinement for solution of \pdes, and (4) double exponential (DE) and generalized Gauss quadrature. The relationships start from the change of variables $s = \log(x)$, and they suggest possibilities for new analyses and new methods in several areas. Concerning (2) and (3), we show that both problems feature the same effect of “linear tapering” near the singularity---of clustered poles in rational approximation and of polynomial orders in $hp\kern .7pt$-mesh refinement. Concerning (4), we note that the tapering effect appears here too, and that the change of variables interpretation sheds new light on why the DE and generalized Gauss methods are effective at integrating arbitrary singularities.
中文翻译:
Sigmoid 函数、奇点的多尺度分辨率和 $hp$ 网格细化
SIAM 评论,第 66 卷,第 4 期,第 683-693 页,2024 年 11 月。
在这篇简短的概念性论文中,我们观察到密切相关的数学适用于具有不同文献的四种背景:(1) 平滑函数的 S 形和 RBF 近似,(2) 具有奇点的解析函数的有理近似,(3) \pdes 解的 $hp\kern .7pt$ 网格细化,以及 (4) 双指数 (DE) 和广义高斯求积。这些关系从变量 $s = \log(x)$ 的变化开始,它们提出了在多个领域进行新分析和新方法的可能性。关于 (2) 和 (3),我们表明这两个问题都具有相同的效应,即有理近似中簇极点的奇点附近的“线性锥度”---和 $hp\kern .7pt$-mesh 细化中的多项式阶数。关于(4),我们注意到这里也出现了锥化效应,变量解释的变化为为什么 DE 和广义高斯方法在积分任意奇点方面有效提供了新的视角。