当前位置:
X-MOL 学术
›
SIAM J. Numer. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
An Operator Preconditioned Combined Field Integral Equation for Electromagnetic Scattering
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-11-07 , DOI: 10.1137/23m1581674 Van Chien Le, Kristof Cools
SIAM Journal on Numerical Analysis ( IF 2.8 ) Pub Date : 2024-11-07 , DOI: 10.1137/23m1581674 Van Chien Le, Kristof Cools
SIAM Journal on Numerical Analysis, Volume 62, Issue 6, Page 2484-2505, December 2024.
Abstract. This paper aims to address two issues of integral equations for the scattering of time-harmonic electromagnetic waves by a perfect electric conductor with Lipschitz continuous boundary: ill-conditioned boundary element Galerkin discretization matrices on fine meshes and instability at spurious resonant frequencies. The remedy to ill-conditioned matrices is operator preconditioning, and resonant instability is eliminated by means of a combined field integral equation. Exterior traces of single and double layer potentials are complemented by their interior counterparts for a purely imaginary wave number. We derive the corresponding variational formulation in the natural trace space for electromagnetic fields and establish its well-posedness for all wave numbers. A Galerkin discretization scheme is employed using conforming edge boundary elements on dual meshes, which produces well-conditioned discrete linear systems of the variational formulation. Some numerical results are also provided to support the numerical analysis.
中文翻译:
用于电磁散射的算子预设组合场积分方程
SIAM 数值分析杂志,第 62 卷,第 6 期,第 2484-2505 页,2024 年 12 月。
抽象。本文旨在解决具有 Lipschitz 连续边界的完美电导体散射时谐电磁波的积分方程的两个问题:细网格上的病态边界元 Galerkin 离散矩阵和杂散谐振频率下的不稳定性。对病态矩阵的补救措施是算子预处理,并通过组合场积分方程消除共振不稳定性。单层和双层电势的外部迹线与它们的内部对应物相辅相成,得到一个纯虚数的波数。我们在电磁场的自然轨迹空间中推导出相应的变分公式,并建立其对所有波数的适定性。采用 Galerkin 离散化方案,在双网格上使用符合标准的边缘边界元,从而产生变分公式的条件良好的离散线性系统。还提供了一些数值结果来支持数值分析。
更新日期:2024-11-07
Abstract. This paper aims to address two issues of integral equations for the scattering of time-harmonic electromagnetic waves by a perfect electric conductor with Lipschitz continuous boundary: ill-conditioned boundary element Galerkin discretization matrices on fine meshes and instability at spurious resonant frequencies. The remedy to ill-conditioned matrices is operator preconditioning, and resonant instability is eliminated by means of a combined field integral equation. Exterior traces of single and double layer potentials are complemented by their interior counterparts for a purely imaginary wave number. We derive the corresponding variational formulation in the natural trace space for electromagnetic fields and establish its well-posedness for all wave numbers. A Galerkin discretization scheme is employed using conforming edge boundary elements on dual meshes, which produces well-conditioned discrete linear systems of the variational formulation. Some numerical results are also provided to support the numerical analysis.
中文翻译:
用于电磁散射的算子预设组合场积分方程
SIAM 数值分析杂志,第 62 卷,第 6 期,第 2484-2505 页,2024 年 12 月。
抽象。本文旨在解决具有 Lipschitz 连续边界的完美电导体散射时谐电磁波的积分方程的两个问题:细网格上的病态边界元 Galerkin 离散矩阵和杂散谐振频率下的不稳定性。对病态矩阵的补救措施是算子预处理,并通过组合场积分方程消除共振不稳定性。单层和双层电势的外部迹线与它们的内部对应物相辅相成,得到一个纯虚数的波数。我们在电磁场的自然轨迹空间中推导出相应的变分公式,并建立其对所有波数的适定性。采用 Galerkin 离散化方案,在双网格上使用符合标准的边缘边界元,从而产生变分公式的条件良好的离散线性系统。还提供了一些数值结果来支持数值分析。