Journal of Geodesy ( IF 3.9 ) Pub Date : 2024-11-07 , DOI: 10.1007/s00190-024-01902-w Jian Ma, Ziqing Wei, Zhenhe Zhai, Duan Li, Changqiang Feng, Xiaogang Liu, Bin Guan
The geoid and quasi-geoid serve as the reference surfaces of the orthometric and normal height systems, respectively. In order to improve the accuracy of the (quasi-) geoid determined by the Stokes integral with use of the Remove-Compute-Restore (RCR) technique, various modification methods for the spherical Stokes’ kernels, including the spheroidal, cosine-, power-, and Molodensky-modified kernels, are studied in this paper. In addition to the traditional Molodensky-modified Stokes’ kernel, a more effective Molodensky-modified Stokes’ kernel is put forward. A general formula for spectral decomposition of the Stokes integral in the RCR mode is derived, followed by the spectral analysis to reveal the transfer principles of gravity data when using different Stokes’ kernels. The spheroidal and modified Stokes integrals can cause spectral leakage phenomenon, and a method to eliminate spectral leakage is presented based on spectral analysis. The research indicates the low truncation degree of the spheroidal Stokes’ kernel and the low modification degrees of the modified Stokes’ kernel affect the accuracy of the (quasi-) geoid significantly. Quantitative methods for estimating the empirical values of the parameters of the low-degree spheroidal and modified Stokes’ kernels are proposed and the effectiveness of the methods is validated through numerical tests.
中文翻译:
使用 Remove-Compute-Restore 技术确定(准)大地水准面的 Stokes 核修改方法
大地水准面和准大地水准面分别用作正高系统和法向高度系统的参考表面。为了提高使用移除-计算-恢复 (RCR) 技术由斯托克斯积分确定的(准)大地水准面的准确性,本文研究了球形斯托克斯核的各种修改方法,包括球形、余弦、幂和莫洛金斯基修改的核。除了传统的 Molodensky 修正的 Stokes 核外,还提出了一种更有效的 Molodensky 修正的 Stokes 核。推导了 RCR 模式下 Stokes 积分的光谱分解通用公式,然后进行光谱分析,以揭示使用不同 Stokes 核时重力数据的传递原理。球状和修正的 Stokes 积分都会引起光谱泄漏现象,提出了一种基于光谱分析的消除光谱泄漏的方法。研究表明,球状 Stokes 核的低截断度和修正的 Stokes 核的低修饰度对(准)大地水准面的准确性有显著影响。提出了估计低度球核和修正斯托克斯核参数经验值的定量方法,并通过数值测试验证了该方法的有效性。