当前位置: X-MOL 学术Bus. Strategy Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The influence of blockchain technology on circular economy implementation in the automotive sector: From a GMM model to a new machine learning algorithm
Business Strategy and the Environment ( IF 12.5 ) Pub Date : 2024-11-06 , DOI: 10.1002/bse.4003
Woon Leong Lin, Nelvin Xe Chung Leow, Wai Mun Lim, Ming Kang Ho, Jing Yi Yong, Chuen Khee Pek

This investigation explores the integration of blockchain technology (BCT) with circular economy (CE) principles within the automotive sector, leveraging a dataset from the years 2011 to 2019. Employing advanced analytical techniques, including machine learning models and the system generalized method of moments (GMM), the study meticulously assesses BCT's impact on CE practices over the specified period. The dataset, curated from esteemed sources such as CSRHub, Thomson Reuters, and Bloomberg, enhances the reliability and validity of our analysis. Results indicate a positive influence of BCT on the adoption and effectiveness of CE practices in the automotive industry, suggesting that CE practices can bolster firm performance. Notably, the analysis reveals that support vector machines (SVM) and neural networks (NNs) exhibit superior efficacy over the random forest (RF) model in capturing the nuances of the BCT‐CE interplay. This is evidenced by their lower root‐mean‐square error (RMSE) and mean absolute error (MAE), signifying greater predictive accuracy. The findings illuminate BCT's potential to revolutionize CE practices, optimize resource use, and foster sustainability in the automotive field.

中文翻译:


区块链技术对汽车行业循环经济实施的影响:从 GMM 模型到新的机器学习算法



这项调查利用 2011 年至 2019 年的数据集,探讨了区块链技术 (BCT) 与汽车行业循环经济 (CE) 原则的整合。该研究采用先进的分析技术,包括机器学习模型和系统广义矩量法 (GMM),仔细评估了 BCT 在指定时期内对 CE 实践的影响。该数据集来自 CSRHub、Thomson Reuters 和 Bloomberg 等知名来源,增强了我们分析的可靠性和有效性。结果表明,BCT 对汽车行业 CE 实践的采用和有效性产生了积极影响,表明 CE 实践可以提高公司绩效。值得注意的是,分析表明,支持向量机 (SVM) 和神经网络 (NN) 在捕获 BCT-CE 相互作用的细微差别方面表现出优于随机森林 (RF) 模型的有效性。它们较低的均方根误差 (RMSE) 和平均绝对误差 (MAE) 证明了这一点,这意味着更高的预测准确性。这些发现阐明了 BCT 在彻底改变 CE 实践、优化资源使用和促进汽车领域可持续性方面的潜力。
更新日期:2024-11-06
down
wechat
bug