当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unraveling the Plasmonic Effect of Au in Promoting Photocatalytic H2 Generation and Organic Synthesis
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-11-07 , DOI: 10.1021/acssuschemeng.4c07440 Wenyao Cheng, Lele Wang, Hongxin Lao, Yingcong Wei, Jing Xu, Bo Weng
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-11-07 , DOI: 10.1021/acssuschemeng.4c07440 Wenyao Cheng, Lele Wang, Hongxin Lao, Yingcong Wei, Jing Xu, Bo Weng
Incorporating plasmonic nanostructures into photocatalysts significantly enhances catalytic efficiency due to plasmonic effects. In this study, we successfully developed a heterojunction between organic semiconductor zinc porphyrin (Zn-TCPP) and colloidal gold (Au) nanoparticles connected via Au–O bonds. The formation of Au–O bonds between Zn-TCPP and Au facilitates charge transfer efficiency by reducing the Schottky barrier at the heterojunction interface. Finite-difference time-domain simulations, in situ XPS measurements, and infrared thermal imaging confirm that the strong localized surface plasmon resonance effect of Au enhances the local electric field and photothermal effect, promoting the separation of electron–hole pairs in the Zn-TCPP/Au sample and improving the reaction kinetics. The optimal Zn-TCPP/Au-2% composite demonstrates an impressive H2 generation rate of 1610 μmol·g–1·h–1, which is 2.7 and 8.6 times greater than the Zn-TCPP and TCPP samples, respectively. Additionally, the Zn-TCPP/Au-2% composite shows high efficiency in the C–N coupling of benzylamine to imine, achieving a yield of 45.1 mmol·g–1 in 24 h. This study provides a comprehensive understanding of how the plasmonic effect of Au enhances the activity of organic semiconductor photocatalysts.
中文翻译:
揭示 Au 在促进光催化 H2 生成和有机合成中的等离激元作用
由于等离激元效应,将等离激元纳米结构掺入光催化剂中可显著提高催化效率。在这项研究中,我们成功地开发了有机半导体锌卟啉 (Zn-TCPP) 和胶体金 (Au) 纳米颗粒之间通过 Au-O 键连接的异质结。Zn-TCPP 和 Au 之间形成 Au-O 键通过减少异质结界面处的肖特基势垒来提高电荷转移效率。有限差分时域模拟、原位 XPS 测量和红外热成像证实,Au 强大的局域表面等离子体共振效应增强了局部电场和光热效应,促进了 Zn-TCPP/Au 样品中电子-空穴对的分离,改善了反应动力学。最佳的 Zn-TCPP/Au-2% 复合材料表现出令人印象深刻的 1610 μmol·g–1·h–1 的 H2 生成速率,分别是 Zn-TCPP 和 TCPP 样品的 2.7 倍和 8.6 倍。此外,Zn-TCPP/Au-2% 复合材料在苄胺与亚胺的 C-N 偶联中表现出很高的效率,在 24 小时内达到 45.1 mmol·g–1。本研究全面了解了 Au 的等离激元效应如何增强有机半导体光催化剂的活性。
更新日期:2024-11-07
中文翻译:
揭示 Au 在促进光催化 H2 生成和有机合成中的等离激元作用
由于等离激元效应,将等离激元纳米结构掺入光催化剂中可显著提高催化效率。在这项研究中,我们成功地开发了有机半导体锌卟啉 (Zn-TCPP) 和胶体金 (Au) 纳米颗粒之间通过 Au-O 键连接的异质结。Zn-TCPP 和 Au 之间形成 Au-O 键通过减少异质结界面处的肖特基势垒来提高电荷转移效率。有限差分时域模拟、原位 XPS 测量和红外热成像证实,Au 强大的局域表面等离子体共振效应增强了局部电场和光热效应,促进了 Zn-TCPP/Au 样品中电子-空穴对的分离,改善了反应动力学。最佳的 Zn-TCPP/Au-2% 复合材料表现出令人印象深刻的 1610 μmol·g–1·h–1 的 H2 生成速率,分别是 Zn-TCPP 和 TCPP 样品的 2.7 倍和 8.6 倍。此外,Zn-TCPP/Au-2% 复合材料在苄胺与亚胺的 C-N 偶联中表现出很高的效率,在 24 小时内达到 45.1 mmol·g–1。本研究全面了解了 Au 的等离激元效应如何增强有机半导体光催化剂的活性。