当前位置: X-MOL 学术Environ. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Nature of Molecular Hybridizations in Nanodiamonds for Boosted Fe(III)/Fe(II) Circulation
Environmental Science & Technology ( IF 10.8 ) Pub Date : 2024-11-07 , DOI: 10.1021/acs.est.4c04733
Kunsheng Hu, Peng Zhou, Yangyang Yang, Shuang Zhong, Xiaoguang Duan, Shaobin Wang

Reducing agents have been frequently utilized as electron donors for Fe(II) generation to resolve the sluggish Fe(III) reduction in Fenton-like reactions, while their irreversible consumption necessitates a robust catalytic system that utilizes green electron donors such as H2O2. In this study, we used annealed nanodiamonds (NDs) as a collection of model catalysts with different sp2/sp3 ratios to investigate the roles of the molecular structure in boosting the Fenton-like reactions. The annealed NDs acted as an electron mediator to transfer electrons from H2O2 to surface-adsorbed Fe(III) for Fe(II) generation as well as an electron donor for direct Fe(III) reduction, driving Fe(II)-catalyzed H2O2 decomposition to produce massive hydroxyl radicals, demonstrating potential in the real-water matrixes. Galvanic cell experiments show that the contribution ratio of mediation and electron donation is 2.75:1, indicating that the majority of Fe(II) was generated through electron transfer from H2O2. Additionally, different carbon configurations (sp–sp2–sp3 hybridizations) were compared to assess the molecular structure-performance relationships in Fe(III) reduction. This study unveils the distinct functions of carbon molecular structures in driving Fe(III)/Fe(II) circulation and provides insights into sustainable Fenton oxidation driven by metal-free catalysis.

中文翻译:


纳米金刚石中分子杂交的性质促进 Fe(III)/Fe(II) 循环



还原剂经常被用作 Fe(II) 生成的电子供体,以解决 Fenton 类反应中缓慢的 Fe(III) 还原,而它们的不可逆消耗需要一个强大的催化系统,该系统利用绿色电子供体,如 H2O2。在本研究中,我们使用退火纳米金刚石 (NDs) 作为具有不同 sp2/sp3 比例的模型催化剂集合,以研究分子结构在促进 Fenton 样反应中的作用。退火的 ND 充当电子介质,将电子从 H2O2 转移到表面吸附的 Fe(III) 以生成 Fe(II),以及直接还原 Fe(III) 的电子供体,驱动 Fe(II) 催化的 H2O2 分解产生大量羟基自由基,在实水基质中显示出潜力。原电池实验表明,介导和电子捐赠的贡献比为 2.75:1,表明大部分 Fe(II) 是通过 H2O2 的电子转移产生的。此外,比较了不同的碳构型 (sp-sp2-sp 3 杂交) 以评估 Fe(III) 还原中的分子结构-性能关系。本研究揭示了碳分子结构在驱动 Fe(III)/Fe(II) 循环中的独特功能,并为无金属催化驱动的可持续 Fenton 氧化提供了见解。
更新日期:2024-11-07
down
wechat
bug