当前位置:
X-MOL 学术
›
Proc. Natl. Acad. Sci. U.S.A.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Cholinergic regulation of dendritic Ca 2+ spikes controls firing mode of hippocampal CA3 pyramidal neurons
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.4 ) Pub Date : 2024-11-06 , DOI: 10.1073/pnas.2321501121 Noémi Kis, Balázs Lükő, Judit Herédi, Ádám Magó, Bela Erlinghagen, Mahboubeh Ahmadi, Snezana Raus Balind, Mátyás Irás, Balázs B. Ujfalussy, Judit K. Makara
Proceedings of the National Academy of Sciences of the United States of America ( IF 9.4 ) Pub Date : 2024-11-06 , DOI: 10.1073/pnas.2321501121 Noémi Kis, Balázs Lükő, Judit Herédi, Ádám Magó, Bela Erlinghagen, Mahboubeh Ahmadi, Snezana Raus Balind, Mátyás Irás, Balázs B. Ujfalussy, Judit K. Makara
Active dendritic integrative mechanisms such as regenerative dendritic spikes enrich the information processing abilities of neurons and fundamentally contribute to behaviorally relevant computations. Dendritic Ca 2+ spikes are generally thought to produce plateau-like dendritic depolarization and somatic complex spike burst (CSB) firing, which can initiate rapid changes in spatial coding properties of hippocampal pyramidal cells (PCs). However, here we reveal that a morpho-topographically distinguishable subpopulation of rat and mouse hippocampal CA3PCs exhibits compound apical dendritic Ca 2+ spikes with unusually short duration that do not support the firing of sustained CSBs. These Ca 2+ spikes are mediated by L-type Ca 2+ channels and their time course is restricted by A- and M-type K + channels. Cholinergic activation powerfully converts short Ca 2+ spikes to long-duration forms, and facilitates and prolongs CSB firing. We propose that cholinergic neuromodulation controls the ability of a CA3PC subtype to generate sustained plateau potentials, providing a state-dependent dendritic mechanism for memory encoding and retrieval.
中文翻译:
树突状 Ca 2+ 刺突的胆碱能调节控制海马 CA3 锥体神经元的放电模式
活跃的树突整合机制,如再生树突尖峰,丰富了神经元的信息处理能力,并从根本上促进了行为相关的计算。树突状 Ca 2+ 刺突通常被认为会产生高原状树突去极化和体细胞复合体刺突爆发 (CSB) 放电,这可以引发海马锥体细胞 (PCs) 空间编码特性的快速变化。然而,在这里我们揭示了大鼠和小鼠海马 CA3PCs 的形态地形学可区分亚群表现出复合的顶端树突状 Ca 2+ 尖峰,持续时间异常短,不支持持续 CSB 的放电。这些 Ca 2+ 尖峰由 L 型 Ca 2+ 通道介导,其时间过程受 A 型和 M 型 K + 通道的限制。胆碱能激活有力地将短的 Ca 2+ 尖峰转化为长持续时间的形式,并促进和延长 CSB 放电。我们提出胆碱能神经调控控制 CA3PC 亚型产生持续平台电位的能力,为记忆编码和检索提供状态依赖性树突机制。
更新日期:2024-11-06
中文翻译:
树突状 Ca 2+ 刺突的胆碱能调节控制海马 CA3 锥体神经元的放电模式
活跃的树突整合机制,如再生树突尖峰,丰富了神经元的信息处理能力,并从根本上促进了行为相关的计算。树突状 Ca 2+ 刺突通常被认为会产生高原状树突去极化和体细胞复合体刺突爆发 (CSB) 放电,这可以引发海马锥体细胞 (PCs) 空间编码特性的快速变化。然而,在这里我们揭示了大鼠和小鼠海马 CA3PCs 的形态地形学可区分亚群表现出复合的顶端树突状 Ca 2+ 尖峰,持续时间异常短,不支持持续 CSB 的放电。这些 Ca 2+ 尖峰由 L 型 Ca 2+ 通道介导,其时间过程受 A 型和 M 型 K + 通道的限制。胆碱能激活有力地将短的 Ca 2+ 尖峰转化为长持续时间的形式,并促进和延长 CSB 放电。我们提出胆碱能神经调控控制 CA3PC 亚型产生持续平台电位的能力,为记忆编码和检索提供状态依赖性树突机制。