当前位置:
X-MOL 学术
›
Mater. Today Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Infinitely rugged intra-cage potential energy landscape in metallic glasses caused by many-body interaction
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-11-06 , DOI: 10.1016/j.mtphys.2024.101582 Haoyu Li, Hongyi Xiao, Takeshi Egami, Yue Fan
Materials Today Physics ( IF 10.0 ) Pub Date : 2024-11-06 , DOI: 10.1016/j.mtphys.2024.101582 Haoyu Li, Hongyi Xiao, Takeshi Egami, Yue Fan
The absence of translational symmetry in glassy materials poses a significant challenge in establishing effective structure-property relationships in real space. Consequently, the potential energy landscape (PEL) in phase space is widely utilized to comprehend the complex phenomena in glasses. The classical PEL features a two-scale profile comprising mega-basins and sub-basins, corresponding to α-relaxations (e.g. glass transition) and β-relaxations (e.g. local cage-breaking atomic rearrangements), respectively. Recent studies, however, reveal that sub-basins are not smooth and contain finer structures, the origins of which remain elusive. Here we probe the smoothness of sub-basin bottoms in glasses' PEL by introducing small intra-cage cyclic loading and then measuring the net changes in atomic-level stresses. Compared to glasses with pair interaction, glasses with many-body interaction exhibit orders-of-magnitude larger and loading-dependent stress changes even before the first cage-breaking event takes place, which reflect much more feature-rich sub-basins. We further demonstrate this stark contrast stems from the spatial distribution of individual atom's constraining force field. Specifically, at vanishing perturbations, many-body interactions disrupt the positive-definite synchrony in energy variations of the perturbed atom and the whole system, causing inherently less confined atomic responses and infinitely rugged sub-basins. The implications of these findings for the selective addition or removal of fine structures in the PEL and the subsequent tuning of glassy materials' responses to external stimuli are also explored.
中文翻译:
多体相互作用引起的金属玻璃中无限坚固的笼内势能景观
玻璃材料中缺乏平移对称性,这对在真实空间中建立有效的结构-性能关系构成了重大挑战。因此,相空间中的势能景观 (PEL) 被广泛用于理解玻璃中的复杂现象。经典的 PEL 具有由巨型盆地和子盆地组成的两个尺度剖面,分别对应于α弛豫(例如玻璃化转变)和β弛豫(例如局部破笼原子重排)。然而,最近的研究表明,子流域并不光滑,并且包含更精细的结构,其起源仍然难以捉摸。在这里,我们通过引入小的笼内循环载荷,然后测量原子级应力的净变化来探测玻璃 PEL 中子盆底的光滑度。与具有成对相互作用的玻璃相比,具有多体相互作用的玻璃甚至在第一次破笼事件发生之前就表现出几个数量级的大且依赖于载荷的应力变化,这反映了特征更加丰富的子盆地。我们进一步证明了这种鲜明的对比源于单个原子的约束力场的空间分布。具体来说,在消失的扰动时,多体相互作用破坏了受扰动原子和整个系统的能量变化的正定同步性,导致固有的受限原子响应和无限崎岖的子盆地。还探讨了这些发现对 PEL 中精细结构的选择性添加或去除以及随后调整玻璃材料对外部刺激的反应的影响。
更新日期:2024-11-06
中文翻译:
多体相互作用引起的金属玻璃中无限坚固的笼内势能景观
玻璃材料中缺乏平移对称性,这对在真实空间中建立有效的结构-性能关系构成了重大挑战。因此,相空间中的势能景观 (PEL) 被广泛用于理解玻璃中的复杂现象。经典的 PEL 具有由巨型盆地和子盆地组成的两个尺度剖面,分别对应于α弛豫(例如玻璃化转变)和β弛豫(例如局部破笼原子重排)。然而,最近的研究表明,子流域并不光滑,并且包含更精细的结构,其起源仍然难以捉摸。在这里,我们通过引入小的笼内循环载荷,然后测量原子级应力的净变化来探测玻璃 PEL 中子盆底的光滑度。与具有成对相互作用的玻璃相比,具有多体相互作用的玻璃甚至在第一次破笼事件发生之前就表现出几个数量级的大且依赖于载荷的应力变化,这反映了特征更加丰富的子盆地。我们进一步证明了这种鲜明的对比源于单个原子的约束力场的空间分布。具体来说,在消失的扰动时,多体相互作用破坏了受扰动原子和整个系统的能量变化的正定同步性,导致固有的受限原子响应和无限崎岖的子盆地。还探讨了这些发现对 PEL 中精细结构的选择性添加或去除以及随后调整玻璃材料对外部刺激的反应的影响。