当前位置: X-MOL 学术Nat. Cell Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Spermidine mediates acetylhypusination of RIPK1 to suppress diabetes onset and progression
Nature Cell Biology ( IF 17.3 ) Pub Date : 2024-11-07 , DOI: 10.1038/s41556-024-01540-6
Tian Zhang, Weixin Fu, Haosong Zhang, Jianlong Li, Beizi Xing, Yuping Cai, Mengmeng Zhang, Xuheng Liu, Chunting Qi, Lihui Qian, Xinbo Hu, Hua Zhu, Shuailong Yang, Min Zhang, Jianping Liu, Ganquan Li, Yang Li, Rong Xiang, Zhengqiang Qi, Junhao Hu, Ying Li, Chengyu Zou, Qin Wang, Xia Jin, Rui Pang, Peiying Li, Junli Liu, Yaoyang Zhang, Zhaoyin Wang, Zheng-Jiang Zhu, Bing Shan, Junying Yuan

It has been established that N-acetyltransferase (murine NAT1 (mNAT1) and human NAT2 (hNAT2)) mediates insulin sensitivity in type 2 diabetes. Here we show that mNAT1 deficiency leads to a decrease in cellular spermidine—a natural polyamine exhibiting health-protective and anti-ageing effects—but understanding of its mechanism is limited. We identify that mNAT1 and hNAT2 modulate a type of post-translational modification involving acetylated spermidine, which we name acetylhypusination, on receptor-interacting serine/threonine-protein kinase 1 (RIPK1)—a key regulator of inflammation and cell death. Spermidine supplementation decreases RIPK1-mediated cell death and diabetic phenotypes induced by NAT1 deficiency in vivo. Furthermore, insulin resistance and diabetic kidney disease mediated by vascular pathology in NAT1-deficient mice can be blocked by inhibiting RIPK1. Finally, we demonstrate a decrease in spermidine and activation of RIPK1 in the vascular tissues of human patients with diabetes. Our study suggests a role for vascular pathology in diabetes onset and progression and identifies the inhibition of RIPK1 kinase as a potential therapeutic approach for the treatment of type 2 diabetes.



中文翻译:


亚精胺介导 RIPK1 乙酰尿蛋白酶化以抑制糖尿病的发生和进展



已经确定 N-乙酰转移酶 (鼠 NAT1 (mNAT1) 和人 NAT2 (hNAT2)) 介导 2 型糖尿病的胰岛素敏感性。在这里,我们表明 mNAT1 缺乏导致细胞亚精胺(一种具有健康和抗衰老作用的天然多胺)减少,但对其机制的了解有限。我们发现 mNAT1 和 hNAT2 调节一种涉及乙酰化亚精胺的翻译后修饰,我们将其命名为乙酰化亚精胺,对受体相互作用的丝氨酸/苏氨酸蛋白激酶 1 (RIPK1) (RIPK1) ——炎症和细胞死亡的关键调节因子。补充亚精胺可减少体内 NAT1 缺陷诱导的 RIPK1 介导的细胞死亡和糖尿病表型。此外,可以通过抑制 RIPK1 来阻断 NAT1 缺陷小鼠血管病理介导的胰岛素抵抗和糖尿病肾病。最后,我们证明了人类糖尿病患者血管组织中亚精胺的减少和 RIPK1 的激活。我们的研究表明血管病理学在糖尿病发病和进展中的作用,并确定 RIPK1 激酶的抑制是治疗 2 型糖尿病的潜在治疗方法。

更新日期:2024-11-07
down
wechat
bug