当前位置:
X-MOL 学术
›
Phys. Chem. Chem. Phys.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optimization of preparation conditions and design of device configurations for Cu3AsS4 solar cells: a combined study of first-principles calculations and SCAPS-1D device simulations
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-11-07 , DOI: 10.1039/d4cp03392b Yi Huang, Changqing Lin, Yang Xue, Binyuan Huang, Dan Huang
Physical Chemistry Chemical Physics ( IF 2.9 ) Pub Date : 2024-11-07 , DOI: 10.1039/d4cp03392b Yi Huang, Changqing Lin, Yang Xue, Binyuan Huang, Dan Huang
Former studies have investigated the band structure and optoelectronic properties of Cu3AsS4 and suggested that it is a promising photovoltaic (PV) absorber. However, its power conversion efficiency (PCE) from experiments is still unsatisfactory and detailed experimental optimization strategies are lacking. Here, combining first-principles calculations and SCAPS-1D device simulations, we have systematically studied the optoelectronic and defect properties of Cu3AsS4 to find the suitable growth conditions and have performed various device simulations by adjusting the constituent layers to optimize the device configuration of the Cu3AsS4 solar cell. Our results demonstrated that the defect and hole concentrations can be regulated to a reasonable range as the PV absorber in metal-rich and S-poor growth environments with a low growth temperature of 500 K. Owing to the large cliff-like conduction band offset between the traditional buffer layers CdS and Cu3AsS4, the open-circuit voltage loss is large and the corresponding PCE is low. The PCE can be improved by adopting the new buffer layers with low electron affinity. The corresponding n-type transparent electrode is further optimized. Finally, the solar cell with the configuration of FTO/WO3/Cu3AsS4/Mo is suggested and its PCE can reach an optimal value of 17.82%.
中文翻译:
Cu3AsS4 太阳能电池制备条件优化和器件配置设计:第一性原理计算和 SCAPS-1D 器件仿真的结合研究
以前的研究调查了 Cu3AsS4 的能带结构和光电性质,并表明它是一种很有前途的光伏 (PV) 吸收剂。然而,其实验的功率转换效率 (PCE) 仍然不令人满意,并且缺乏详细的实验优化策略。在这里,结合第一性原理计算和 SCAPS-1D 器件模拟,我们系统地研究了 Cu3AsS4 的光电和缺陷特性,以找到合适的生长条件,并通过调整组成层进行了各种器件模拟,以优化 Cu3AsS4 的器件配置太阳能电池。我们的结果表明,在生长温度为 500 K 的低金属和贫 S 生长环境中,作为 PV 吸收器,可以将缺陷和空穴浓度调节到合理的范围内。由于传统缓冲层 CdS 和 Cu3AsS4 之间的大悬崖状导带偏移,开路电压损耗大,相应的 PCE 较低。通过采用低电子亲和力的新缓冲层,可以改善 PCE。相应的 n 型透明电极进一步优化。最后,提出了 FTO/WO3/Cu3AsS4/Mo 配置的太阳能电池,其 PCE 可以达到 17.82% 的最佳值。
更新日期:2024-11-07
中文翻译:
Cu3AsS4 太阳能电池制备条件优化和器件配置设计:第一性原理计算和 SCAPS-1D 器件仿真的结合研究
以前的研究调查了 Cu3AsS4 的能带结构和光电性质,并表明它是一种很有前途的光伏 (PV) 吸收剂。然而,其实验的功率转换效率 (PCE) 仍然不令人满意,并且缺乏详细的实验优化策略。在这里,结合第一性原理计算和 SCAPS-1D 器件模拟,我们系统地研究了 Cu3AsS4 的光电和缺陷特性,以找到合适的生长条件,并通过调整组成层进行了各种器件模拟,以优化 Cu3AsS4 的器件配置太阳能电池。我们的结果表明,在生长温度为 500 K 的低金属和贫 S 生长环境中,作为 PV 吸收器,可以将缺陷和空穴浓度调节到合理的范围内。由于传统缓冲层 CdS 和 Cu3AsS4 之间的大悬崖状导带偏移,开路电压损耗大,相应的 PCE 较低。通过采用低电子亲和力的新缓冲层,可以改善 PCE。相应的 n 型透明电极进一步优化。最后,提出了 FTO/WO3/Cu3AsS4/Mo 配置的太阳能电池,其 PCE 可以达到 17.82% 的最佳值。