当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimizing interface chemistry with novel covalent molecule for highly sustainable and kinetics-enhanced sodium metal batteries
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-11-07 , DOI: 10.1016/j.ensm.2024.103898
Xiaolong Cheng, Dongjun Li, Yu Yao, Fanfan Liu, Biao Ma, Pengcheng Shi, Yu Shao, Fangzhi Huang, Yingjie Sun, Yu Jiang, Shikuo Li

Metallic sodium has attracted increasing attention as an ideal anode material for next-generation high energy density and low-cost secondary batteries. However, it is highly desired yet remains challenging to improve their cycling stability and safety due to unstable solid electrolyte interphase and dendrite growth. Herein, a hybrid interface layer composed of Na2Se and Na3P is constructed on the surface of Na (Na@NPS) via in situ spontaneous reaction. The hybrid interface layer with merits of high sodiophilicity and high Na-ion conductivity can effectively induce homogeneous Na-ion flux distribution, accelerate the reaction kinetics and suppress decomposition of electrolyte components. Benefitting from the above advantages, the Na@NPS symmetric cell delivers a long cycle life (1000 h at 1 mA cm–2 and 1 mAh cm–2). Furthermore, the full cell coupling with Na3V2(PO4)3-based cathode provides an exceptionally long lifespan (1500 cycles) at 20 C with a capacity retention of 98.2 % and high energy density (226 Wh kg–1). Therefore, the enhanced electrochemical performance illustrates the feasibility of the covalent molecule derived hybrid multifunctional interfaces in solving the irregular deposition of Na-ion and expediting reaction kinetics in Na metal batteries.

中文翻译:


使用新型共价分子优化界面化学,实现高度可持续和动力学增强的钠金属电池



金属钠作为下一代高能量密度和低成本二次电池的理想负极材料,越来越受到关注。然而,由于不稳定的固体电解质界面和枝晶生长,提高其循环稳定性和安全性是非常理想的,但仍然具有挑战性。在此,通过原位自发反应在 Na (Na@NPS) 表面构建了由 Na2Se 和 Na3P 组成的杂化界面层。具有高亲碱性和高 Na-ion 电导率的杂化界面层可以有效地诱导均匀的 Na-ion 通量分布,加速反应动力学并抑制电解质组分的分解。得益于上述优势,Na@NPS对称电池具有较长的循环寿命(在 1 mA cm-2 和 1 mAh cm-2 下为 1000 小时)。此外,与基于 Na3V2(PO4)3 的阴极的全电池耦合在 20 C 下提供了极长的使用寿命(1500 次循环),容量保持率为 98.2% 和高能量密度 (226 Wh kg–1)。因此,增强的电化学性能说明了共价分子衍生的杂化多功能界面在解决 Na 金属电池中 Na 离子的不规则沉积和加速反应动力学的可行性。
更新日期:2024-11-07
down
wechat
bug