当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Layered hybrid superlattices as designable quantum solids
Nature ( IF 50.5 ) Pub Date : 2024-11-06 , DOI: 10.1038/s41586-024-07858-3
Zhong Wan, Qi Qian, Yu Huang, Xiangfeng Duan

Crystalline solids typically show robust long-range structural ordering, vital for their remarkable electronic properties and use in functional electronics, albeit with limited customization space. By contrast, synthetic molecular systems provide highly tunable structural topologies and versatile functionalities but are often too delicate for scalable electronic integration. Combining these two systems could harness the strengths of both, yet realizing this integration is challenging owing to distinct chemical bonding structures and processing conditions. Two-dimensional atomic crystals comprise crystalline atomic layers separated by non-bonding van der Waals gaps, allowing diverse atomic or molecular intercalants to be inserted without disrupting existing covalent bonds. This enables the creation of a diverse set of layered hybrid superlattices (LHSLs) composed of alternating crystalline atomic layers of variable electronic properties and self-assembled atomic or molecular interlayers featuring customizable chemical compositions and structural motifs. Here we outline strategies to prepare LHSLs and discuss emergent properties. With the versatile molecular design strategies and modular assembly processes, LHSLs offer vast flexibility for weaving distinct chemical constituents and quantum properties into monolithic artificial solids with a designable three-dimensional potential landscape. This opens unprecedented opportunities to tailor charge correlations, quantum properties and topological phases, thereby defining a rich material platform for advancing quantum information science.



中文翻译:


作为可设计量子固体的层状杂化超晶格



结晶固体通常表现出稳健的长程结构有序性,这对于其卓越的电子特性和在功能电子产品中的应用至关重要,尽管定制空间有限。相比之下,合成分子系统提供高度可调的结构拓扑和多功能功能,但对于可扩展的电子集成来说往往过于脆弱。将这两个系统结合起来可以利用两者的优势,但由于不同的化学键合结构和加工条件,实现这种集成具有挑战性。二维原子晶体由由非键合范德华间隙隔开的结晶原子层组成,允许在不破坏现有共价键的情况下插入不同的原子或分子嵌入剂。这使得能够创建一组多样化的多层混合超晶格 (LHSL),这些超晶格由具有可变电子特性的交替晶体原子层和具有可定制化学成分和结构基序的自组装原子或分子夹层组成。在这里,我们概述了准备 LHSL 的策略并讨论了新兴特性。凭借多功能的分子设计策略和模块化组装工艺,LHSL 为将不同的化学成分和量子特性编织成具有可设计三维潜力景观的整体人造固体提供了巨大的灵活性。这为定制电荷相关性、量子特性和拓扑相提供了前所未有的机会,从而为推进量子信息科学定义了一个丰富的材料平台。

更新日期:2024-11-07
down
wechat
bug