Nature ( IF 50.5 ) Pub Date : 2024-11-06 , DOI: 10.1038/s41586-024-08156-8 Gaurav Modi, Shubham K. Parate, Choah Kwon, Andrew C. Meng, Utkarsh Khandelwal, Anudeep Tullibilli, James Horwath, Peter K. Davies, Eric A. Stach, Ju Li, Pavan Nukala, Ritesh Agarwal
Electrically induced amorphization is uncommon and has so far been realized by pulsed electrical current in only a few material systems, which are mostly based on the melt–quench process1. However, if the melting step can be avoided and solid-state amorphization can be realized electrically, it opens up the possibility for low-power device applications2,3,4,5. Here we report an energy-efficient, unconventional long-range solid-state amorphization in a new ferroic β″-phase of indium selenide nanowires through the application of a direct-current bias rather than a pulsed electrical stimulus. The complex interplay of the applied electric field perpendicular to the polarization, current flow parallel to the van der Waals layer and piezoelectric stress results in the formation of interlayer sliding defects and coupled disorder induced by in-plane polarization rotation in this layered material. On reaching a critical limit of the electrically induced disorder, the structure becomes frustrated and locally collapses into an amorphous phase6, and this phenomenon is replicated over a much larger microscopic-length scale through acoustic jerks7,8. Our work uncovers previously unknown multimodal coupling mechanisms of the ferroic order in materials to the externally applied electric field, current and internally generated stress, and can be useful to design new materials and devices for low-power electronic and photonic applications.
中文翻译:
铁质 In2Se3 中的电驱动长程固态非晶化
电诱导非晶化并不常见,到目前为止,仅在少数材料系统中通过脉冲电流实现,这些材料系统主要基于熔融淬火工艺1。然而,如果可以避免熔化步骤并且可以通过电气方式实现固态非晶化,则为低功率器件应用开辟了可能性2,3,4,5。在这里,我们报道了一种通过施加直流偏压而不是脉冲电刺激,在硒化铟纳米线的新型铁质 β“ 相中实现的节能、非常规的长程固态非晶化。垂直于极化的外加电场、平行于范德华层的电流和压电应力之间的复杂相互作用导致层间滑动缺陷的形成,以及该层状材料中面内极化旋转引起的耦合无序。当达到电感应无序的临界极限时,结构变得受挫并局部坍缩成无定形相6,并且这种现象通过声学抽搐在更大的微观尺度上复制7,8。我们的工作揭示了以前未知的材料中铁有序与外部施加的电场、电流和内部产生的应力的多模态耦合机制,可用于为低功率电子和光子应用设计新材料和器件。