当前位置:
X-MOL 学术
›
Phys. Rev. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Augmenting Density Matrix Renormalization Group with Clifford Circuits
Physical Review Letters ( IF 8.1 ) Pub Date : 2024-11-06 , DOI: 10.1103/physrevlett.133.190402 Xiangjian Qian, Jiale Huang, Mingpu Qin
Physical Review Letters ( IF 8.1 ) Pub Date : 2024-11-06 , DOI: 10.1103/physrevlett.133.190402 Xiangjian Qian, Jiale Huang, Mingpu Qin
The density matrix renormalization group (DMRG) is widely acknowledged as a highly effective and accurate method for solving one-dimensional quantum many-body systems. However, the direct application of DMRG to the study of two-dimensional systems encounters challenges due to the limited entanglement encoded in the underlying wave-function Ansatz, known as the matrix product state. Conversely, Clifford circuits offer a promising avenue for simulating states with substantial entanglement, albeit confined to stabilizer states. In this work, we present the seamless integration of Clifford circuits within the DMRG algorithm, leveraging the advantages of both Clifford circuits and DMRG. This integration leads to a significant enhancement in simulation accuracy with small additional computational cost. Moreover, this framework is useful not only for its current application but also for its potential to be easily adapted to various other numerical approaches.
中文翻译:
使用 Clifford 电路增强密度矩阵重整化组
密度矩阵重整化群 (DMRG) 被广泛认为是求解一维量子多体系统的一种非常有效和准确的方法。然而,将 DMRG 直接应用于二维系统的研究遇到了挑战,因为在底层波函数 Ansatz 中编码的纠缠有限,称为矩阵乘积状态。相反,Clifford 电路为模拟具有大量纠缠的状态提供了一种很有前途的途径,尽管仅限于稳定器状态。在这项工作中,我们利用 Clifford 电路和 DMRG 的优势,展示了 Clifford 电路在 DMRG 算法中的无缝集成。这种集成可以显著提高仿真精度,同时增加计算成本。此外,该框架不仅对其当前应用有用,而且因为它有可能很容易适应各种其他数值方法。
更新日期:2024-11-06
中文翻译:
使用 Clifford 电路增强密度矩阵重整化组
密度矩阵重整化群 (DMRG) 被广泛认为是求解一维量子多体系统的一种非常有效和准确的方法。然而,将 DMRG 直接应用于二维系统的研究遇到了挑战,因为在底层波函数 Ansatz 中编码的纠缠有限,称为矩阵乘积状态。相反,Clifford 电路为模拟具有大量纠缠的状态提供了一种很有前途的途径,尽管仅限于稳定器状态。在这项工作中,我们利用 Clifford 电路和 DMRG 的优势,展示了 Clifford 电路在 DMRG 算法中的无缝集成。这种集成可以显著提高仿真精度,同时增加计算成本。此外,该框架不仅对其当前应用有用,而且因为它有可能很容易适应各种其他数值方法。