当前位置:
X-MOL 学术
›
Phys. Rev. B
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Higher-bracket structure of density operators in Weyl fermion systems and topological insulators
Physical Review B ( IF 3.2 ) Pub Date : 2024-11-06 , DOI: 10.1103/physrevb.110.195115 Edwin Langmann, Shinsei Ryu, Ken Shiozaki
Physical Review B ( IF 3.2 ) Pub Date : 2024-11-06 , DOI: 10.1103/physrevb.110.195115 Edwin Langmann, Shinsei Ryu, Ken Shiozaki
We study the algebraic structure of electron density operators in gapless Weyl fermion systems in 𝑑 = 3 , 5 , 7 , ⋯ spatial dimensions and in topological insulators (without any protecting symmetry) in 𝑑 = 4 , 6 , 8 , ⋯ spatial dimensions. These systems are closely related by the celebrated bulk-boundary correspondence. Specifically, we study the higher bracket—a generalization of commutator for more than two operators—of electron density operators in these systems. For topological insulators, we show that the higher-bracket algebraic structure of density operators structurally parallels with the Girvin-MacDonald-Platzman algebra (the 𝑊 1 + ∞ algebra), the algebra of electron density operators projected onto the lowest Landau level in the quantum Hall effect. By the bulk-boundary correspondence, the bulk higher-bracket structure mirrors its counterparts at the boundary. Specifically, we show that the density operators of Weyl fermion systems, once normal-ordered with respect to the ground state, their higher bracket acquires a 𝑐 -number part. This part is an analog of the Schwinger term in the commutator of the fermion current operators. We further identify this part with a cyclic cocycle, which is a topological invariant and an element of Connes' noncommutative geometry.
中文翻译:
外尔费米子系统和拓扑绝缘体中密度算子的高架结构
我们研究了d=3,5,7,⋯ 空间维度的无间隙外尔费米子系统和 d=4,6,8,⋯ 空间维度的拓扑绝缘体(没有任何保护对称性)中电子密度算子的代数结构。这些系统通过著名的 bulk-boundary 对应关系密切相关。具体来说,我们研究了这些系统中电子密度算子的较高范围——两个以上算子的换向子的泛化。对于拓扑绝缘体,我们表明密度算子的高括号代数结构在结构上与 Girvin-MacDonald-Platzman 代数(W1+∞ 代数)平行,电子密度算子的代数投影到量子霍尔效应中的最低朗道能级。通过体边界对应关系,体大括号结构在边界处反映了其对应结构。具体来说,我们表明外尔费米子系统的密度算子,一旦相对于基态呈正序,它们的上级括号就会获得一个 c 数部分。这部分是费米子电流算子换向器中 Schwinger 项的模拟。我们进一步用循环共循环来识别这部分,它是一个拓扑不变量,也是 Connes 非交换几何的一个元素。
更新日期:2024-11-06
中文翻译:
外尔费米子系统和拓扑绝缘体中密度算子的高架结构
我们研究了