当前位置:
X-MOL 学术
›
J. Comput. Graph. Stat.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multi-task Learning for Gaussian Graphical Regressions with High Dimensional Covariates
Journal of Computational and Graphical Statistics ( IF 1.4 ) Pub Date : 2024-10-31 , DOI: 10.1080/10618600.2024.2421246 Jingfei Zhang, Yi Li
Journal of Computational and Graphical Statistics ( IF 1.4 ) Pub Date : 2024-10-31 , DOI: 10.1080/10618600.2024.2421246 Jingfei Zhang, Yi Li
Gaussian graphical regression is a powerful approach for regressing the precision matrix of a Gaussian graphical model on covariates, which permits the response variables and covariates to outnumbe...
中文翻译:
具有高维协变量的高斯图形回归的多任务学习
高斯图形回归是一种强大的方法,用于对高斯图形模型的精度矩阵进行协变量的回归,它允许响应变量和协变量数量超过响应变量和协变量。
更新日期:2024-10-31
中文翻译:
具有高维协变量的高斯图形回归的多任务学习
高斯图形回归是一种强大的方法,用于对高斯图形模型的精度矩阵进行协变量的回归,它允许响应变量和协变量数量超过响应变量和协变量。