International Journal of Numerical Methods for Heat & Fluid Flow ( IF 4.0 ) Pub Date : 2024-11-07 , DOI: 10.1108/hff-04-2024-0268 Mohanaphriya US, Tanmoy Chakraborty
Purpose
This research focuses on the controlling irreversibilities in a radiative, chemically reactive electromagnetohydrodynamics (EMHD) flow of a nanofluid toward a stagnation point. Key considerations include the presence of Ohmic dissipation, linear thermal radiation, second-order chemical reaction with the multiple slips. With these factors, this study aims to provide insights for practical applications where thermal management and energy efficiency are paramount.
Design/methodology/approach
Lie group transformation is used to revert the leading partial differential equations into nonlinear ODE form. Hence, the solutions are attained analytically through differential transformation method-Padé and numerically using the Runge–Kutta–Fehlberg method with shooting procedure, to ensure the precise and reliable determination of the solution. This dual approach highlights the robustness and versatility of the methods.
Findings
The system’s entropy generation is enhanced by incrementing the magnetic field parameter (M), while the electric field (E) and velocity slip parameters (ξ) control its growth. Mass transportation irreversibility and the Bejan number (Be) are significantly increased by the chemical reaction rate (Cr). In addition, there is a boost in the rate of heat transportation by 3.66% while 0.05⩽ξ⩽0.2; meanwhile for 0.2⩽ξ⩽1.1, the rate of mass transportation gets enhanced by 12.87%.
Originality/value
This paper presents a novel approach to analyzing the entropy optimization in a radiative, chemically reactive EMHD nanofluid flow near a stagnation point. Moreover, this research represents a significant advancement in the application of analytical techniques, complemented by numerical approaches to study boundary layer equations.
中文翻译:
纳米流体共存欧姆耗散和多次滑移的辐射和化学反应 EMHD 流中的熵优化
目的
本研究的重点是控制纳米流体向停滞点的辐射化学反应电磁流体动力学 (EMHD) 流动中的不可逆性。关键考虑因素包括欧姆耗散、线性热辐射、与多次滑移的二阶化学反应。利用这些因素,本研究旨在为热管理和能源效率至关重要的实际应用提供见解。
设计/方法/方法
李群变换用于将前导偏微分方程恢复为非线性 ODE 形式。因此,通过微分变换法 Padé 进行分析获得解,并使用带有射击程序的 Runge-Kutta-Fehlberg 方法进行数值计算,以确保精确可靠地确定解。这种双重方法突出了方法的稳定性和多功能性。
发现
通过增加磁场参数 (M) 来增强系统的熵生成,而电场 (E) 和速度滑移参数 (ξ) 控制其增长。化学反应速率 (Cr) 显著增加了质量传递不可逆性和 Bejan 数 (Be)。此外,热传递速率提高了 3.66%,而 0.05⩽ξ⩽ 0.2;同时,对于 0.2⩽ξ⩽1.1,公共交通率提高了 12.87%。
原创性/价值
本文提出了一种分析停滞点附近辐射、化学反应性 EMHD 纳米流体流中熵优化的新方法。此外,这项研究代表了分析技术应用的重大进步,并辅以研究边界层方程的数值方法。