当前位置: X-MOL 学术npj Digit. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Artificial intelligence applied to coronary artery calcium scans (AI-CAC) significantly improves cardiovascular events prediction
npj Digital Medicine ( IF 12.4 ) Pub Date : 2024-11-05 , DOI: 10.1038/s41746-024-01308-0
Morteza Naghavi, Anthony P. Reeves, Kyle Atlas, Chenyu Zhang, Thomas Atlas, Claudia I. Henschke, David F. Yankelevitz, Matthew J. Budoff, Dong Li, Sion K. Roy, Khurram Nasir, Sabee Molloi, Zahi Fayad, Michael V. McConnell, Ioannis Kakadiaris, David J. Maron, Jagat Narula, Kim Williams, Prediman K. Shah, Daniel Levy, Nathan D. Wong

Coronary artery calcium (CAC) scans contain valuable information beyond the Agatston Score which is currently reported for predicting coronary heart disease (CHD) only. We examined whether new artificial intelligence (AI) applied to CAC scans can predict non-CHD events, including heart failure, atrial fibrillation, and stroke. We applied AI-enabled automated cardiac chambers volumetry and calcified plaque characterization to CAC scans (AI-CAC) of 5830 asymptomatic individuals (52.2% women, age 61.7 ± 10.2 years) in the multi-ethnic study of atherosclerosis during 15 years of follow-up, 1773 CVD events accrued. The AUC at 1-, 5-, 10-, and 15-year follow-up for AI-CAC vs. Agatston score was (0.784 vs. 0.701), (0.771 vs. 0.709), (0.789 vs. 0.712) and (0.816 vs. 0.729) (p < 0.0001 for all), respectively. AI-CAC plaque characteristics, including number, location, density, plus number of vessels, significantly improved CHD prediction in the CAC 1–100 cohort vs. Agatston Score. AI-CAC significantly improved the Agatston score for predicting all CVD events.



中文翻译:


应用于冠状动脉钙化扫描 (AI-CAC) 的人工智能显著改善心血管事件预测



冠状动脉钙化 (CAC) 扫描包含除 Agatston 评分之外的有价值的信息,目前报告的仅用于预测冠心病 (CHD)。我们检查了应用于 CAC 扫描的新人工智能 (AI) 是否可以预测非 CHD 事件,包括心力衰竭、心房颤动和中风。在动脉粥样硬化的多种族研究中,我们将 AI 支持的自动心腔容积测定和钙化斑块表征应用于 5830 名无症状个体 (52.2% 的女性,年龄 61.7 ± 10.2 岁) 的 CAC 扫描 (AI-CAC),在 15 年的随访期间,累积了 1773 例 CVD 事件。AI-CAC 与 Agatston 评分在 1 年、5 年、10 年和 15 年随访时的 AUC 分别为 (0.784 vs. 0.701)、(0.771 vs. 0.709)、(0.789 vs. 0.712)和 (0.816 vs. 0.729) (p < 0.0001)。与 Agatston 评分相比,AI-CAC 斑块特征(包括数量、位置、密度以及血管数量)显著改善了 CAC 1-100 队列中的 CHD 预测。AI-CAC 显著提高了预测所有 CVD 事件的 Agatston 评分。

更新日期:2024-11-06
down
wechat
bug