当前位置:
X-MOL 学术
›
Chem. Eng. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optimization of heterogeneous continuous flow hydrogenation using FTIR inline analysis: a comparative study of multi-objective Bayesian optimization and kinetic modeling
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2024-11-05 , DOI: 10.1016/j.ces.2024.120901 Kejie Chai, Weida Xia, Runqiu Shen, Guihua Luo, Yingying Cheng, Weike Su, An Su
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2024-11-05 , DOI: 10.1016/j.ces.2024.120901 Kejie Chai, Weida Xia, Runqiu Shen, Guihua Luo, Yingying Cheng, Weike Su, An Su
Heterogeneous continuous flow hydrogenation is important in the chemical industry, yet the simultaneous optimization of yield and productivity has historically been complex. This study introduces a heterogeneous continuous flow hydrogenation system specifically designed for preparing 2-amino-3-methylbenzoic acid (AMA), employing FTIR inline analysis coupled with an artificial neural network model for monitoring. We explored two distinct reaction optimization strategies: multi-objective Bayesian optimization (MOBO) and mechanism-based intrinsic kinetic modeling, executed in parallel to optimize reaction conditions. Remarkably, the MOBO approach achieved an optimal AMA yield (99%) and productivity (0.64 g/hour) within a limited number of iterations. In comparison, despite requiring extensive experimental data collection and equation fitting, the intrinsic kinetic modeling approach yielded a similar optimal result. Thus, while MOBO offers a more efficient route with fewer required experiments, kinetic modeling provides deeper insights into the optimization landscape but may be impacted by non-chemical kinetic phenomena and requires significant time and resources.
中文翻译:
使用 FTIR 在线分析优化非均相连续流加氢:多目标贝叶斯优化和动力学建模的比较研究
非均相连续流加氢在化工行业中很重要,但同时优化产量和生产率历来很复杂。本研究介绍了一种专为制备 2-氨基-3-甲基苯甲酸 (AMA) 而设计的非均相连续流加氢系统,采用 FTIR 在线分析与人工神经网络模型相结合进行监测。我们探索了两种不同的反应优化策略:多目标贝叶斯优化 (MOBO) 和基于机理的内禀动力学建模,并行执行以优化反应条件。值得注意的是,MOBO 方法在有限的迭代次数内实现了最佳的 AMA 产量 (99%) 和生产率 (0.64 g/h)。相比之下,尽管需要大量的实验数据收集和方程拟合,但本征动力学建模方法产生了类似的最佳结果。因此,虽然 MOBO 提供了一种更高效的路线,所需的实验更少,但动力学建模提供了对优化前景的更深入见解,但可能会受到非化学动力学现象的影响,并且需要大量时间和资源。
更新日期:2024-11-05
中文翻译:
使用 FTIR 在线分析优化非均相连续流加氢:多目标贝叶斯优化和动力学建模的比较研究
非均相连续流加氢在化工行业中很重要,但同时优化产量和生产率历来很复杂。本研究介绍了一种专为制备 2-氨基-3-甲基苯甲酸 (AMA) 而设计的非均相连续流加氢系统,采用 FTIR 在线分析与人工神经网络模型相结合进行监测。我们探索了两种不同的反应优化策略:多目标贝叶斯优化 (MOBO) 和基于机理的内禀动力学建模,并行执行以优化反应条件。值得注意的是,MOBO 方法在有限的迭代次数内实现了最佳的 AMA 产量 (99%) 和生产率 (0.64 g/h)。相比之下,尽管需要大量的实验数据收集和方程拟合,但本征动力学建模方法产生了类似的最佳结果。因此,虽然 MOBO 提供了一种更高效的路线,所需的实验更少,但动力学建模提供了对优化前景的更深入见解,但可能会受到非化学动力学现象的影响,并且需要大量时间和资源。