当前位置:
X-MOL 学术
›
Energy Storage Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bioinspired design of vascularized glassy metal-organic frameworks electrolyte for quasi-solid-state sodium batteries
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-11-06 , DOI: 10.1016/j.ensm.2024.103892 Yingchun Yan, Zheng Liu, Weining Li, Fan Feng, Xinhou Yang, Bin Qi, Min Gong, Zhiyuan Li, Changqing Wang, Tong Wei, Zhuangjun Fan
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-11-06 , DOI: 10.1016/j.ensm.2024.103892 Yingchun Yan, Zheng Liu, Weining Li, Fan Feng, Xinhou Yang, Bin Qi, Min Gong, Zhiyuan Li, Changqing Wang, Tong Wei, Zhuangjun Fan
Quasi-solid-state electrolytes (QSSEs) are regarded as the most promising alternative for next-generation battery technology due to the compatibility of assemble process and high safety. However, the rational design of solid hosts to ensure the high-efficiency utilization of tiny liquid electrolytes and the deep understanding of ion transport mechanisms at heterogeneous structures are still challenging. Herein, inspired by the ion transport in biological blood vessels, we propose a nitrogen vacancy modified glassy metal-organic framework (MOF) as Na-ion QSSEs host, which shows multilevel ions transport channels, isotropy property, and no grain boundaries. The vascularized glassy MOF enables the reasonable distribution of a small amount of solvent (14 wt.% (solvent as a percentage of QSSE by mass)) in both macro and microenvironments with specific functions, boosting the fast Na-ion transport (1.18 × 10−4 S cm–1 , 30 °C) and Na-ion transfer number (0.92), and homogeneous Na-ion nucleation/propagation even at -50 °C. Meanwhile, the quasi-solid-state Na||Na3 V2 (PO4 )3 /C cell demonstrates excellent rate capability and long cycling stability (0.0288 % capacity decay per cycle after 500 cycles). The bioinspired design of glassy MOF will shed light on new avenues for the development of energy storage and conversion.
中文翻译:
用于准固态钠电池的血管化玻璃状金属有机框架电解质的仿生设计
准固态电解质 (QSSE) 由于组装工艺的兼容性和高安全性,被认为是下一代电池技术最有前途的替代品。然而,固体主体的合理设计以确保微小液体电解质的高效利用以及对异质结构中离子传输机制的深入理解仍然具有挑战性。在此,受生物血管中离子传输的启发,我们提出了一种氮空位修饰的玻璃状金属有机框架 (MOF) 作为钠离子 QSSEs 的主体,它显示出多级离子传输通道、各向同性特性和无晶界。血管化玻璃状 MOF 能够在具有特定功能的宏观和微观环境中合理分配少量溶剂(14 wt.%(溶剂占 QSSE 质量的百分比)),促进快速 Na 离子传输 (1.18 × 10−4 S cm–1, 30 °C) 和 Na 离子转移数 (0.92),即使在 -50 °C 下也能实现均匀的 Na 离子成核/传播。 同时,准固态 Na||Na3V2(PO4)3/C 电池表现出优异的倍率能力和长循环稳定性(500 次循环后每个循环容量衰减 0.0288%)。玻璃 MOF 的仿生设计将为储能和转换的发展开辟新途径。
更新日期:2024-11-06
中文翻译:
用于准固态钠电池的血管化玻璃状金属有机框架电解质的仿生设计
准固态电解质 (QSSE) 由于组装工艺的兼容性和高安全性,被认为是下一代电池技术最有前途的替代品。然而,固体主体的合理设计以确保微小液体电解质的高效利用以及对异质结构中离子传输机制的深入理解仍然具有挑战性。在此,受生物血管中离子传输的启发,我们提出了一种氮空位修饰的玻璃状金属有机框架 (MOF) 作为钠离子 QSSEs 的主体,它显示出多级离子传输通道、各向同性特性和无晶界。血管化玻璃状 MOF 能够在具有特定功能的宏观和微观环境中合理分配少量溶剂(14 wt.%(溶剂占 QSSE 质量的百分比)),促进快速 Na 离子传输 (1.18 × 10−4 S cm–1, 30 °C) 和 Na 离子转移数 (0.92),即使在 -50 °C 下也能实现均匀的 Na 离子成核/传播。 同时,准固态 Na||Na3V2(PO4)3/C 电池表现出优异的倍率能力和长循环稳定性(500 次循环后每个循环容量衰减 0.0288%)。玻璃 MOF 的仿生设计将为储能和转换的发展开辟新途径。