当前位置:
X-MOL 学术
›
Energy Storage Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dramatic enhancement in lithium-ion battery capacity through synergistic effects of electronic transitions in light-assisted organic coordination cathode material Co(bpy)(dhbq)2
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-11-05 , DOI: 10.1016/j.ensm.2024.103891 Ledi Chen, Zaka Ullah, Houliang Sun, Shiwei Yu, Wanting Li, Mingliang Chen, Liwei Liu, Qi Li
Energy Storage Materials ( IF 18.9 ) Pub Date : 2024-11-05 , DOI: 10.1016/j.ensm.2024.103891 Ledi Chen, Zaka Ullah, Houliang Sun, Shiwei Yu, Wanting Li, Mingliang Chen, Liwei Liu, Qi Li
Integration of photoactive and lithium storing units into a single cathode endows it with notable capacity in the presence of suitable light. However, the interfacial effect between the two materials causes significant loss of photogenerated electrons during their transfer which is one of the biggest obstacles in the development of current photo-assisted rechargeable batteries. In this paper, a bifunctional cobalt-coordinated organic cathode is fabricated by combining 2,2′-bpy and DHBQ via Co by adopting the spin evaporation technique. It optimizes the pristine interfaces of photoactive and lithium storage units into a photoactive unit-metal interface and a metal-lithium storage unit interface through application of Co. In the presence of light, Co causes a strong metal-ligand charge transfer. Meanwhile, ligand-ligand charge transfer also takes place between the multi-ligands. The synergistic effect of these two phenomena offers a discharge capacity of 387 mAh g -1 which is significantly higher than that of 316 mAh g -1 recorded in the absence of light. The demonstrated design of bifunctional metal-ligand cathode by incorporation of photoactive ligands into lithium storage ligands through applications of metal centers can open the pathways for establishing a new type of photo-assisted lithium-ion batteries with higher efficiency and lower cost.
中文翻译:
通过光辅助有机配位正极材料 Co(bpy)(dhbq)2 中电子跃迁的协同效应显著提高锂离子电池容量
将光活性和锂存储单元集成到单个阴极中,使其在合适的光线下具有显着的容量。然而,两种材料之间的界面效应会导致光生电子在转移过程中的显著损失,这是当前光辅助可充电电池发展的最大障碍之一。本文采用自旋蒸发技术,通过 Co 将 2,2′-bpy 和 DHBQ 结合,制备了双功能钴配位有机阴极。它通过应用 Co 将光活性单元和锂存储单元的原始界面优化为光活性单元-金属界面和金属-锂存储单元界面。在光存在下,Co 会引起强烈的金属配体电荷转移。同时,配体-配体电荷转移也发生在多配体之间。这两种现象的协同作用提供了 387 mAh g -1 的放电容量,明显高于在没有光线下记录的 316 mAh g -1。通过应用金属中心将光活性配体掺入锂存储配体中,展示了双功能金属配体阴极的设计,为建立效率更高、成本更低的新型光辅助锂离子电池开辟了途径。
更新日期:2024-11-05
中文翻译:
通过光辅助有机配位正极材料 Co(bpy)(dhbq)2 中电子跃迁的协同效应显著提高锂离子电池容量
将光活性和锂存储单元集成到单个阴极中,使其在合适的光线下具有显着的容量。然而,两种材料之间的界面效应会导致光生电子在转移过程中的显著损失,这是当前光辅助可充电电池发展的最大障碍之一。本文采用自旋蒸发技术,通过 Co 将 2,2′-bpy 和 DHBQ 结合,制备了双功能钴配位有机阴极。它通过应用 Co 将光活性单元和锂存储单元的原始界面优化为光活性单元-金属界面和金属-锂存储单元界面。在光存在下,Co 会引起强烈的金属配体电荷转移。同时,配体-配体电荷转移也发生在多配体之间。这两种现象的协同作用提供了 387 mAh g -1 的放电容量,明显高于在没有光线下记录的 316 mAh g -1。通过应用金属中心将光活性配体掺入锂存储配体中,展示了双功能金属配体阴极的设计,为建立效率更高、成本更低的新型光辅助锂离子电池开辟了途径。