当前位置:
X-MOL 学术
›
Phys. Rev. X
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
CFT𝐷fromTQFT𝐷+1via Holographic Tensor Network, and Precision Discretization ofCFT2
Physical Review X ( IF 11.6 ) Pub Date : 2024-11-05 , DOI: 10.1103/physrevx.14.041033 Lin Chen, Kaixin Ji, Haochen Zhang, Ce Shen, Ruoshui Wang, Xiangdong Zeng, Ling-Yan Hung
Physical Review X ( IF 11.6 ) Pub Date : 2024-11-05 , DOI: 10.1103/physrevx.14.041033 Lin Chen, Kaixin Ji, Haochen Zhang, Ce Shen, Ruoshui Wang, Xiangdong Zeng, Ling-Yan Hung
We show that the path integral of conformal field theories in 𝐷 dimensions (C F T 𝐷 ) can be constructed by solving for eigenstates of a renormalization group (RG) operator following from the Turaev-Viro formulation of a topological field theory (topological quantum field theory) (TQFT) in 𝐷 + 1 dimensions (T Q F T 𝐷 + 1 ), explicitly realizing the holographic sandwich relation between a symmetric theory and a TQFT. Generically, exact eigenstates corresponding to symmetric T Q F T 𝐷 follow from Frobenius algebra in T Q F T 𝐷 + 1 . For 𝐷 = 2 , we construct eigenstates that produce 2D rational CFT path integrals exactly, which curiously connect a continuous-field theoretic path integral with the Turaev-Viro state sum. We also devise and illustrate numerical methods for 𝐷 = 2 , 3 to search for C F T 𝐷 as phase transition points between symmetric T Q F T 𝐷 . Finally, since the RG operator is in fact an exact analytic holographic tensor network, we compute “bulk-boundary” correlators and compare them with the AdS/CFT dictionary at 𝐷 = 2 . Promisingly, they are numerically compatible given our accuracy, although further works will be needed to explore the precise connection to the AdS/CFT correspondence.
中文翻译:
CFTDfromTQFTD+1,以及 CFT2 的精确离散化
我们表明,D维 共形场论(CFTD ) 的路径积分可以通过求解重整化群(RG)算子的特征态来构建,遵循拓扑场论(拓扑量子场论)(TQFTD+1)的Turaev-Viro公式(TQFTD+1 ),明确实现了对称理论和 TQFT 之间的全息三明治关系。通常,对应于对称 TQFTD 的精确特征态遵循 TQFTD+1 中的 Frobenius 代数。当 D=2 时,我们构建了精确产生 2D 有理 CFT 路径积分的特征态,它奇怪地将连续场理论路径积分与 Turaev-Viro 状态和联系起来。我们还设计并说明了 D=2 、3 的数值方法,以搜索 CFTD 作为对称 TQFTD 之间的相变点。最后,由于 RG 算子实际上是一个精确的解析全息张量网络,因此我们计算了 “bulk-boundary” 相关器,并将其与 D=2 处的 AdS/CFT 字典进行比较。有希望的是,鉴于我们的准确性,它们在数值上是兼容的,尽管需要进一步的工作来探索与 AdS/CFT 对应关系的确切联系。
更新日期:2024-11-06
中文翻译:
CFTDfromTQFTD+1,以及 CFT2 的精确离散化
我们表明,D