当前位置:
X-MOL 学术
›
Dalton Trans.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
LDH-derived Co0.5Ni0.5Te2 dispersed in 3D carbon sheets as a separator modifier to enable kinetics-accelerated lithium–sulfur batteries
Dalton Transactions ( IF 3.5 ) Pub Date : 2024-11-06 , DOI: 10.1039/d4dt02619e Chunmei Li, Kan Mi, Kai Xu, Zhuo Jia, Xiaolei Jiang, Huili Peng, Xiuwen Zheng, Hongjiao Nie
Dalton Transactions ( IF 3.5 ) Pub Date : 2024-11-06 , DOI: 10.1039/d4dt02619e Chunmei Li, Kan Mi, Kai Xu, Zhuo Jia, Xiaolei Jiang, Huili Peng, Xiuwen Zheng, Hongjiao Nie
Lithium–sulfur batteries are considered powerful candidates for the next generation of advanced energy-storage systems owing to their high energy density and theoretical specific capacity. However, their practical commercial feasibility has been hampered by their sluggish kinetics and severe shuttle effect. Hence, a novel hybrid comprising NiCo-LDH-derived Co0.5Ni0.5Te2 nanoparticles grafted on 3D carbon sheets was rationally constructed through facile steps and served as a functional separator modifier for a lithium–sulfur battery. It was found that the 3D cross-linked conductive network structure of the hybrid is conductive to continuous electron transfer. In addition, well-dispersed Co0.5Ni0.5Te2 nanoparticles with hexahedral morphology offer an ample sulfophilic surface to chemically anchor and catalyze the redox dynamics of sulfur species. It was proven that the dynamic conversion of sulfur-involved reactions was effectively promoted and the utilization of polysulfides was boosted. The related cells demonstrated attractive long-cycling durability (784.8 mA h g−1 at 2 C after 500 cycles) and an excellent rate performance (699.5 mA h g−1 even at 7 C). Furthermore, when sulfur loading reached 6.89 mg cm−2, areal capacity could still be maintained at 6.40 mA h cm−2 after 50 cycles at 0.2 C. This work provides a promising strategy to design a multifunctional separator modifier and promotes the exploration of metal tellurides to engineer advanced kinetics-accelerated lithium–sulfur batteries.
中文翻译:
LDH 衍生的 Co0.5Ni0.5Te2 分散在 3D 碳片中,作为隔膜改性剂,以实现动力学加速的锂硫电池
锂硫电池因其高能量密度和理论比容量而被认为是下一代先进储能系统的有力候选者。然而,由于其缓慢的动力学和严重的航天飞机效应,它们的实际商业可行性受到了阻碍。因此,通过简单的步骤合理构建了一种新型杂化物,包括接枝在 3D 碳片上的 NiCo-LDH 衍生的 Co0.5Ni0.5Te2 纳米颗粒,并用作锂硫电池的功能隔膜改性剂。研究发现,杂化物的 3D 交联导电网络结构有利于连续电子转移。此外,具有六面体形态的良好分散的 Co0.5Ni0.5Te2 纳米颗粒提供了充足的亲磺表面,以化学方式锚定和催化硫物质的氧化还原动力学。事实证明,有效促进了硫涉及反应的动态转化,促进了多硫化物的利用。相关电池表现出有吸引力的长循环耐久性(500 次循环后,2 C 下为 784.8 mA h g-1)和出色的倍率性能(即使在 7 C 下也为 699.5 mA h g-1)。此外,当硫负载量达到 6.89 mg cm-2 时,在 0.2 C 下循环 50 次后,面容量仍可保持在 6.40 mA h cm-2。这项工作为设计多功能隔膜改性剂提供了一种很有前途的策略,并促进了金属碲化物的探索,以设计先进的动力学加速锂硫电池。
更新日期:2024-11-06
中文翻译:
LDH 衍生的 Co0.5Ni0.5Te2 分散在 3D 碳片中,作为隔膜改性剂,以实现动力学加速的锂硫电池
锂硫电池因其高能量密度和理论比容量而被认为是下一代先进储能系统的有力候选者。然而,由于其缓慢的动力学和严重的航天飞机效应,它们的实际商业可行性受到了阻碍。因此,通过简单的步骤合理构建了一种新型杂化物,包括接枝在 3D 碳片上的 NiCo-LDH 衍生的 Co0.5Ni0.5Te2 纳米颗粒,并用作锂硫电池的功能隔膜改性剂。研究发现,杂化物的 3D 交联导电网络结构有利于连续电子转移。此外,具有六面体形态的良好分散的 Co0.5Ni0.5Te2 纳米颗粒提供了充足的亲磺表面,以化学方式锚定和催化硫物质的氧化还原动力学。事实证明,有效促进了硫涉及反应的动态转化,促进了多硫化物的利用。相关电池表现出有吸引力的长循环耐久性(500 次循环后,2 C 下为 784.8 mA h g-1)和出色的倍率性能(即使在 7 C 下也为 699.5 mA h g-1)。此外,当硫负载量达到 6.89 mg cm-2 时,在 0.2 C 下循环 50 次后,面容量仍可保持在 6.40 mA h cm-2。这项工作为设计多功能隔膜改性剂提供了一种很有前途的策略,并促进了金属碲化物的探索,以设计先进的动力学加速锂硫电池。