当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Unveiling Surface Chemistry of Ultrafast-Sintered LLZO Solid-State Electrolytes for High-Performance Li-Garnet Solid-State Batteries
Chemistry of Materials ( IF 7.2 ) Pub Date : 2024-11-05 , DOI: 10.1021/acs.chemmater.4c02351 Huanyu Zhang, Matthias Klimpel, Krzysztof Wieczerzak, Romain Dubey, Faruk Okur, Johann Michler, Lars P.H. Jeurgens, Dmitry Chernyshov, Wouter van Beek, Kostiantyn V. Kravchyk, Maksym V. Kovalenko
Chemistry of Materials ( IF 7.2 ) Pub Date : 2024-11-05 , DOI: 10.1021/acs.chemmater.4c02351 Huanyu Zhang, Matthias Klimpel, Krzysztof Wieczerzak, Romain Dubey, Faruk Okur, Johann Michler, Lars P.H. Jeurgens, Dmitry Chernyshov, Wouter van Beek, Kostiantyn V. Kravchyk, Maksym V. Kovalenko
Ultrafast (UF) sintering emerges as a game-changing sintering methodology for fabricating Li7La3Zr2O12 (LLZO) solid-state electrolytes, representing a pivotal stride toward the advancement and prospective commercialization of Li-garnet solid-state batteries. Despite its widespread use in the fabrication of LLZO ceramics, the chemical composition of the UF-sintered LLZO surface remains largely unexplored. This study presents an in-depth analysis of the surface chemistry of UF-sintered LLZO using comprehensive techniques, including depth-profiling X-ray photoelectron spectroscopy (XPS) and focused-ion-beam time-of-flight secondary ion mass spectroscopy (FIB-TOF-SIMS). Our investigation uncovers a striking difference between the surface of UF-sintered and conventionally sintered LLZO, revealing predominant surface contamination by Li2O up to ca. 40 nm depth in the case of UF processing. Comparative synchrotron X-ray diffraction data during UF and conventional sintering elucidate the origin of surface contamination. We propose a viable solution to this issue through an additional heat treatment (HT) step at 900 °C after UF sintering, as corroborated by XPS and FIB-TOF-SIMS measurements. Furthermore, we present a comparative assessment of the electrochemical performance of Li/LLZO/Li symmetric cells based on UF-sintered LLZO pellets, both with and without the post-HT step, underscoring the pivotal role of an uncontaminated LLZO surface.
中文翻译:
揭开用于高性能锂石榴石固态电池的超快烧结 LLZO 固态电解质的表面化学
超快 (UF) 烧结成为制造 Li7La3Zr2O12 (LLZO) 固态电解质的一种改变游戏规则的烧结方法,代表了锂石榴石固态电池的进步和潜在商业化的关键一步。尽管 LLZO 陶瓷被广泛用于制造 LLZO 陶瓷,但 UF 烧结 LLZO 表面的化学成分在很大程度上仍未得到探索。本研究使用综合技术对超滤烧结 LLZO 的表面化学进行了深入分析,包括深度剖析 X 射线光电子能谱 (XPS) 和聚焦离子束飞行时间二次离子质谱 (FIB-TOF-SIMS)。我们的调查揭示了超滤烧结和常规烧结 LLZO 表面之间的显着差异,揭示了在超滤加工中,Li2O 的主要表面污染深度约为 40 nm。超滤和常规烧结过程中的同步加速器 X 射线衍射数据比较阐明了表面污染的来源。我们通过在 UF 烧结后在 900 °C 下进行额外的热处理 (HT) 步骤来解决这个问题,XPS 和 FIB-TOF-SIMS 测量证实了这一点。此外,我们对基于 UF 烧结 LLZO 颗粒的 Li/LLZO/Li 对称电池的电化学性能进行了比较评估,无论有没有 HT 后步骤,强调了未受污染的 LLZO 表面的关键作用。
更新日期:2024-11-05
中文翻译:
揭开用于高性能锂石榴石固态电池的超快烧结 LLZO 固态电解质的表面化学
超快 (UF) 烧结成为制造 Li7La3Zr2O12 (LLZO) 固态电解质的一种改变游戏规则的烧结方法,代表了锂石榴石固态电池的进步和潜在商业化的关键一步。尽管 LLZO 陶瓷被广泛用于制造 LLZO 陶瓷,但 UF 烧结 LLZO 表面的化学成分在很大程度上仍未得到探索。本研究使用综合技术对超滤烧结 LLZO 的表面化学进行了深入分析,包括深度剖析 X 射线光电子能谱 (XPS) 和聚焦离子束飞行时间二次离子质谱 (FIB-TOF-SIMS)。我们的调查揭示了超滤烧结和常规烧结 LLZO 表面之间的显着差异,揭示了在超滤加工中,Li2O 的主要表面污染深度约为 40 nm。超滤和常规烧结过程中的同步加速器 X 射线衍射数据比较阐明了表面污染的来源。我们通过在 UF 烧结后在 900 °C 下进行额外的热处理 (HT) 步骤来解决这个问题,XPS 和 FIB-TOF-SIMS 测量证实了这一点。此外,我们对基于 UF 烧结 LLZO 颗粒的 Li/LLZO/Li 对称电池的电化学性能进行了比较评估,无论有没有 HT 后步骤,强调了未受污染的 LLZO 表面的关键作用。