当前位置:
X-MOL 学术
›
Dalton Trans.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Doping-induced band-gap shrinkage to modify the electronic structure of MoS2 for organic wastewater management
Dalton Transactions ( IF 3.5 ) Pub Date : 2024-11-05 , DOI: 10.1039/d4dt00523f Yuchen Zhang, Yuehan Jia, Yanjie Li, Hongquan Xu, Jingsu Wang, Maobin Wei, Yong Zhang, Hui Yuan, Ming Gao
Dalton Transactions ( IF 3.5 ) Pub Date : 2024-11-05 , DOI: 10.1039/d4dt00523f Yuchen Zhang, Yuehan Jia, Yanjie Li, Hongquan Xu, Jingsu Wang, Maobin Wei, Yong Zhang, Hui Yuan, Ming Gao
MoS2, with its high specific surface area and tunable electronic structure, has received much interest in the fields of sensing and environmental remediation. Nevertheless, pure MoS2 has the disadvantages of easy aggregation and high electron–hole pair complexity, which affect its SERS and photocatalytic performance. In this work, a band-gap shrinkage strategy was used to improve MoS2 performance for SERS and photocatalytic applications. It exhibited high SERS activity (enhancement factor (EF) = 3.61 × 108), great stability (4 mth), broad applicability (CV, CR and R6G), and excellent reusability (with a recovery of 95% after 5 cycles). In addition, the interfacial dipole–dipole interaction and charge transfer (CT) process caused by doping Ru together enhanced the SERS sensitivity, reducing the limit of detection of CV to 1011 M. The degradation rate of 10−5 M CV was up to 99% after 60 min of Ru-MoS2 photocatalytic degradation under visible light. This study investigated the effect of doping-induced bandgap shrinkage on charge transfer (CT), providing new insights into improving the sensitivity of semiconductor SERS substrates for efficient low-concentration SERS detection and low-cost sustainable wastewater remediation.
中文翻译:
掺杂诱导的带隙收缩改变 MoS2 的电子结构,用于有机废水管理
MoS2 具有高比表面积和可调电子结构,在传感和环境修复领域引起了广泛关注。然而,纯 MoS2 具有易聚集和电子-空穴对复杂性高的缺点,这影响了其 SERS 和光催化性能。在这项工作中,使用带隙收缩策略来提高 SERS 和光催化应用的 MoS2 性能。它表现出高 SERS 活性 (增强因子 (EF) = 3.61 × 108)、高稳定性 (4 mth)、广泛的适用性 (CV、CR 和 R6G) 和出色的可重用性 (5 次循环后回收率为 95%)。此外,掺杂 Ru 引起的界面偶极子-偶极子相互作用和电荷转移 (CT) 过程共同提高了 SERS 灵敏度,将 CV 的检测限降低到 1011 M。在可见光下,Ru-MoS2 光催化降解 60 min 后,10−5 M CV 的降解率高达 99%。本研究调查了掺杂诱导的带隙收缩对电荷转移 (CT) 的影响,为提高半导体 SERS 衬底的灵敏度以实现高效的低浓度 SERS 检测和低成本的可持续废水修复提供了新的见解。
更新日期:2024-11-05
中文翻译:
掺杂诱导的带隙收缩改变 MoS2 的电子结构,用于有机废水管理
MoS2 具有高比表面积和可调电子结构,在传感和环境修复领域引起了广泛关注。然而,纯 MoS2 具有易聚集和电子-空穴对复杂性高的缺点,这影响了其 SERS 和光催化性能。在这项工作中,使用带隙收缩策略来提高 SERS 和光催化应用的 MoS2 性能。它表现出高 SERS 活性 (增强因子 (EF) = 3.61 × 108)、高稳定性 (4 mth)、广泛的适用性 (CV、CR 和 R6G) 和出色的可重用性 (5 次循环后回收率为 95%)。此外,掺杂 Ru 引起的界面偶极子-偶极子相互作用和电荷转移 (CT) 过程共同提高了 SERS 灵敏度,将 CV 的检测限降低到 1011 M。在可见光下,Ru-MoS2 光催化降解 60 min 后,10−5 M CV 的降解率高达 99%。本研究调查了掺杂诱导的带隙收缩对电荷转移 (CT) 的影响,为提高半导体 SERS 衬底的灵敏度以实现高效的低浓度 SERS 检测和低成本的可持续废水修复提供了新的见解。